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The World Fertility Survey is an international research programme whose purpose is to 

assess the current state of human fertility throughout the world. This is being done principally 

through promoting and supporting nationally representative, internationally comparable, 

and scientifically designed and conducted sample surveys of fertility behaviour in as many 

countries as possible. 

The WFS is being undertaken, with the collaboration of the United Nations, by the Inter­

national Statistical Institute in cooperation with the International Union for the Scientific 

Study of Population. Financial support is provided principally by the United Nations Fund 

for Population Activities and the United States Agency for International Development. 

This paper is one of a series of Technical Bulletins recommended by the WFS Technical 

Advisory Committee to supplement the document Strategies for the Analysis of WFS Data 

and which deal with -specific methodological problems of analysis beyond the Country 

Report No. 1. Their circulation is restricted to people involved in the analysis of WFS 

data, to the WFS depositary libraries and to certain other libraries. Further information 

and a list of these libraries may be obtained by writing to the Information Office, Inter­

national Statistical Institute, 428 Prinses Beatrixlaan, Voorburg, The Hague, Netherlands. 
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1 Introduction: Objectives and Scope 

This is one of a series of Technical Bulletins issued by the World Fertility Survey with the 
objective of illustrating applications of statistical methodology to various aspects of the 
analysis of sample survey data, and in particular of WFS data. 

The present bulletin is concerned with the estimation and interpretation of sampling 
errors of survey estimates. Consideration is also given to the question of presentation of 
sampling errors in survey reports in a way which facilitates their proper use by researchers 
in the interpretation of substantive results, as well as in sample design and evaluation. 

It has been a long-standing practice of the WFS to encourage and assist participating 
countries in publishing detailed sampling error estimates along with substantive results 
of the survey. Considerable effort has been made in this direction. For example, the 
WFS 'Data Processing Guidelines' (1980) contain recommendations on how to code 
the sample structure to ensure that sampling errors can be computed, and provide detailed 
specification of survey variables and sample subclasses for which computation of sampling 
errors is recommended. The WFS has developed (and distributed at a nominal charge) a 
package program, CLUSTERS, suitable for routine and large-scale computation of 
sampling errors for descriptive statistics from complex samples (Verma and Pearce 1978). 
Comparative analysis of sampling errors from a number of fertility surveys has also been 
undertaken (Kish, Groves and Krotki 1976; Verma, Scott and O'Muircheartaigh 1980). 
Consequently, practically all First Country Reports of WFS surveys include detailed 
sampling error estimates, and many provide excellent examples of procedures for esti­
mation, presentation and interpretation of sampling errors. 

Drawing on this work, the present bulletin aims at providing more systematic and 
detailed guidelines on computation, presentation, interpretation and use of sampling 
errors. Section 2 defines sampling error, placing it in the context of the total survey 
error, and considers why it is useful to compute sampling errors. It also provides a simple 
exposition of the interpretation and use of sampling errors, with illustrations. This section 
is directed specifically to the general user of survey results who, in reaching conclusions 
from the survey, must take into account the quality of the data and the associated 
margins of uncertainty, including those due to sampling variability. 

The next three sections are directed specifically at the statistician and subject matter 
specialist responsible for the production of survey reports; these sections should also 
be useful in enhancing the understanding of the general reader of survey reports. Section 
3 describes practical methods of computing sampling errors. The emphasis is on general 
and simple procedures which provide reasonably good approximation in diverse situ­
ations and hence are suitable for routine and extensive computations. The context here, 
as elsewhere, is that of a large-scale, single-round survey, with a probability sample and 
complex design, aimed at providing a variety of descriptive statistics of the type en­
countered, for example, in WFS First Country Reports (WFS 1977). Section 4 explores 
patterns of variation in sampling error results, across sample subgroups and across sub­
stantive variables, in the light of theoretical and empirical considerations. The objective 
is to illustrate how information on sampling errors may be summarized, and also extra­
polated to subclasses, variables and samples other than those for which actual compu­
tations are performed. Section 5 provides guidelines on presentation of sampling error 
results for different types of users: the general reader and user of survey results, the 
subject matter specialist engaged in primary and secondary analysis of the survey data, 
and the sampling statistician interested in evaluating the design used for guidance in 
designing other, future samples. 
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Finally, a brief outline of the package program CLUSTERS is provided in appendix A. 
The availability of this package is one of the factors which have made it possible for 
most WPS First Country Reports to include information on sampling errors, and organi­
zations undertaking other surveys may profitably utilize the package for the same 
purpose. 

The bulletin has a dual objective: to provide a step-by-step guide on how to compute 
and utilize sampling errors for diverse statistics, and at the same time to enhance the 
reader's appreciation of the nature and significance of errors or uncertainties inherent 
in the sampling process. The emphasis of the discussion is on its possible relevance to 
practical survey situations rather than on theoretical refinements. Specialists may regard 
some of the material included as common knowledge available in many excellent text­
books; however the document is aimed at a wider body of survey practitioners and 
users of survey data who have to take many decisions without being themselves expert 
sampling statisticians. 
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2 The Significance and Interpretation of Sampling Errors 

2.1 INTRODUCTION 

It is widely recognized as good practice for survey reports to include detailed information 
on sampling variability of the survey estimates. Cross-tabulations of the data from large­
scale multi-purpose surveys generally involve numerous estimates over diverse subgroups, 
each with its associated sampling error. This section is concerned with the basic question: 
how the general reader and practical user of the survey results can utilize information 
on sampling errors in interpreting the substantive survey results and in drawing inferences 
from the survey. 

Errors in surveys arise from numerous sources and sampling error is just one com­
ponent of error. To appreciate its significance, it is important to place it in the context 
of the total error. Section 2.2 outlines a typology of survey errors and defines exactly 
what component of the total error is referred to as the 'sampling error'. In this context, 
the remainder of section 2 deals with the practical question: what can the user of survey 
results do with the information on sampling errors? Section 2.3 discusses the significance 
of sampling error in survey design and the interpretation of survey results, and sections 
2.4 and 2.5 describe and illustrate how information on sampling error may be inter­
preted as margins of uncertainty in the estimates obtained from a sample survey. 

2.2 SAMPLING ERROR AND OTHER SURVEY ERRORS 

The objective of a sample survey is to make estimates or inferences of general applica­
bility for a population, on the basis of observations made on a limited number (sample) 
of units of the population. We may define 'error' as the difference between the (usually 
unknown) actual population value and the value estimated from the observed sample, 
and we distinguish two broad categories of error (Verma 198la). First, errors arise from 
the fact that what is observed or measured departs from what it is intended to measure 
in the survey. Such errors of measurement centre on the substantive content of the 
survey: definition of the survey objectives, their operationalization into a coherent and 
consistent set of questions, the interpretation and communication of these to the re­
spondent, the respondent's ability and willingness to provide the information sought, 
the quality of recording, editing and coding the responses, etc. 

Secondly, errors arise from the process of extrapolation of the results from the ob­
served units to the entire study population. These errors centre on the process of sample 
design and selection, and will be present even if there are no errors of measurement 
involved in the units actually enumerated. It is important to define this second group 
of errors since sampling error, which is a component of it, is sometimes confused with 
the group as a whole. 

To draw inferences from a sample survey about the population under study in an 
objective manner, it is necessary to have a probability sample; that is, it is necessary 
for the relative chance of being selected into the sample to be known and non-zero 
for each unit in the population. 

Even when the sample is designed to be a probability sample, the above conditions 
may be violated in practice due to defects in sample implementation. Operationally, 
a sample is selected from a frame which explicitly or implicitly provides a list, and the 
sample design provides specific rules and procedures for sample selection from this list. 
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However, it may happen that not all units in the study population are included in the 
operational sampling frame (non-coverage); or some units may be duplicated in the 
frame, increasing their chance of selection into the sample; or there may be insufficient 
information for unique definition and identification of units in the field, or ambiguities 
in the correspondence between units of sampling and units of enumeration; or sample 
selection may not be executed as intended or designed; or information may not be 
obtained from all the units specified as belonging to the sample (non-response). As a 
consequence of factors such as these, the sample structure can be distorted by some 
units being entirely excluded or selected with probabilities different from those required 
by the sample design. These errors of sample implementation (as well as any deliberate 
departures from probability sampling) can result in known or unknown biases in esti­
mates obtained from the survey. 

Errors of measurement and errors of sample implementation are collectively termed 
non-sampling errors. As sketched above, these arise from a wide variety of sources and 
affect the survey results in different and complex ways (for a detailed discussion, see 
United Nations 1982). As distinct from these, the sampling error is inherent in the 
process of statistical estimation of population parameters from results obtained on a 
probability sample of the population. A sample design specifies rules by which units 
from the population are to be selected for enumeration and rules for the estimation 
of population parameters; even in the absence of measurement and implementation 
errors, repeated applications of the same design would result in different estimates 
depending on the actual units which happened to be selected. The sampling error of an 
estimator is a measure of its variability under the theoretically possible repetitions of the 
survey in the absence of non-sampling errors. 

In general, the effect of any particular source of error (sampling or non-sampling) 
on aggregate survey results can be decomposed into two components: variable error 
and bias. This distinction is based on the possibility, in principle, of repetition of the 
survey under the same conditions. Some of the conditions under which the survey is 
taken may be considered essential to its design and operation: for example, the general 
social conditions, characteristics of the population enumerated, quality of the sampling 
frame available, nature and complexity of the information sought, or the type of survey 
staff and other facilities available. In addition to the essential conditions, survey results 
are also influenced by transient or chance factors, such as the particular units selected 
into the sample, the particular field and office staff used, or the conditions under which 
a particular interview is conducted. One can conceive of the survey being repeated under 
the given essential conditions; if this were done, different repetitions would still give 
different results due to the varying impact of chance factors. The variable component 
of the error measures the variability between different estimates made from such hypo­
thetical repetitions of the survey. The average of all possible repetitions is the expected 
value under the given essential conditions. The difference between this expected or 
average value and the desired population value is the bias (Hansen, Hurwitz and Bershad 
1961). More simply, but approximately, bias is the constant component of error which 
has the same effect on any repetition of the survey (Kish 196 5: 517). 

Variable error measures variation between estimates from different repetitions under 
the same essential conditions. The possible repetitions may be considered to be made 
up of two 'layers': repeated observations over a fixed sample of units; and repetition 
of the survey over different samples. Measurement variance, or response variance, is a 
measure of the variability of repeated measurements over the same sample of units; the 
variability of the average or expected value of these measurements over different samples 
is the sampling variance. 

In short, sampling variance is intended to measure the variability between estimates 
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from different samples, to the exclusion of variable errors and biases resulting from the 
processes of measurement and sample implementation. (However, as explained in section 
3, estimates of sampling variance in practice often include some contribution from other 
sources of variability, such as response variance.) 

Finally we may note that the sampling 'mean square error' is composed of the sampling 
variance plus the square of the sampling or estimation bias. The latter bias is defined as 
the difference between the expected value of an estimator and the population parameter 
being estimated, in the absence of measurement errors and sample implementation 
errors. This bias is purely a statistical property of the estimator used, and with reasonable 
sample size and design can usually be avoided through the use of proper estimation pro­
cedures, such as by appropriately weighting sample values to compensate for differences 
in probabilities of selection. It is in this sense that most estimates considered in WFS 
First Country Reports are 'unbiased' (see, for example, Central Bureau of Statistics, 
Indonesia, 1978: 131 ). However, in certain situations the estimation bias may become 
serious, as in the case of ratio estimates from clustered samples with very unequal cluster 
sizes, as described in section 3. 

2.3 SIGNIFICANCE OF SAMPLING ERRORS 

In interpreting information on sampling errors, the reader has to bear in mind that 
they represent only one component of the total survey error. For estimates based on a 
relatively small sample size, this component may be the dominant one; however, in 
other situations, non-sampling errors, particularly systematic biases, may be much more 
important. In surveys with considerable rates of non-response, refusal, response error, 
listing error, etc, it is not always easy to decide how much attention should be given 
to sampling errors. Some survey statisticians give the impression of being exclusively 
concerned with the sampling errors, which are often easily computed, and ignoring the 
possibly more significant, but often unknown, non-sampling errors. Such an orientation 
is obviously not defensible. On the other hand, it is equally meaningless to declare that 
in general non-sampling error is predominantly more important than sampling error since 
the latter increases progressively as the size of the population subgroup under consider­
ation diminishes. Thus in a small enough subgroup, the sampling error is almost certain 
to outweigh the non-sampling error. 

It is important to appreciate the significance of information on sampling errors. As 
an experienced statistical organization has noted (Yugoslavia Federal Statistical Office 
1978): 

Only after years of experience with a variety of surveys have we come to a firm opinion that 
sampling errors have an orientational value. Data from a sample survey might be, at least in prin­
ciple, anything between 'excellent' and 'useless'. An inspection of the magnitude of sampling errors 
for various characteristics at the level of the country as a whole as well as its subdivisions is the first 
step in passing judgement about the place of the survey between these extremes. Therefore, in order 
to establish the basis for the evaluation process of the sample survey data, information about the 
magnitude of sampling errors should be considered as an indispensible part of each sample survey 
report. 

Needless to say, a knowledge of sampling errors is no more than a part of the information needed 
for the evaluation process. 

At its subsequent stages this process has to go into biases, the enumerator effect, a general study 
of the precautionary measures taken in the field, etc. However, all these additional steps have a very 
limited value unless they are combined with information about sampling errors [italics in the original.] 

To the above consideration of orientation it must be added that information on the 
magnitude of sampling errors is essential in deciding the degree of detail with which 
the survey data may be meaningfully classified. In a fertility survey, for example, 
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interpretation of survey results generally requires very detailed classification of the 
data by demographic characteristics such as age, marriage duration or parity, and by the 
socio-economic background characteristics of the respondent. Even for a sample of a 
few thousand respondents, the sample categories being compared and contrasted can 
rapidly become very small. Roughly speaking, while the magnitude of non-sampling 
bias in a category is more or less independent of its sample size, its sampling variance 
tends to increase with decreasing sample size. Consequently the sampling error can be 
the predominant, or at least a significant, part of the total error for many small categories 
and comparisons of substantive interest. 

Sampling error information is also essential for sample design and evaluation. Of 
course sample design is severely constrained by a variety of practical considerations 
such as the availability of sampling frames, fieldwork arrangements, the survey time­
table, requirements of supervision and control, and, above all, the survey budget. (See 
WFS, 'Manual on Sample Design' (1975) for a useful exposition of the factors involved 
in the choice of sample design for fertility and similar surveys.) Statistical efficiency 
is just one of the factors involved - although one which cannot be ignored. While prac­
tical constraints define, however narrowly, the class of feasible designs, choices have to 
be made within those on the basis of efficiency in terms of costs and variances. Some 
of the obvious questions to be considered relate to sample size, allocation, clustering 
and stratification. For example: 

• Was (is) the sample size appropriate? Did the presence of large sampling errors pre­
clude important survey objectives being met? Or alternatively, could a smaller sample 
have met these objectives better, perhaps by permitting a greater control of non­
sampling errors? 

• Was the sample allocated appropriately between different reporting domains? Was 
the minimum sample allocated to any domain large enough to meet the survey ob­
jectives? How did any disproportionate allocation affect the efficiency of the overall 
design? 

o Was the degree of clustering of sample units too high, or too low, on the basis of its 
effect on costs, variances and control of non-llampling errors? How much cost and 
trouble was saved by introducing additional sampling stages, and what was their 
contribution to the total sampling error? 

• In terms of their sampling error, what were the most critical variables in determining 
sample size and design? 

Generally the practical constraints are not rigorously binding in the sense of com­
pletely determining the sample design; data relating to sampling errors and costs provide, 
at least in principle, the decisive evidence on important aspects of design such as those 
noted above. Furthermore, even in the absence of data on costs, considerable progress 
can be made by looking at sampling errors alone. This is illustrated by an evaluation of 
sampling errors from WFS surveys which concluded that 'perhaps there has been too 
strict an adherence to proportional allocation between domains ... In some of the more 
heterogeneous, large countries . . . greater emphasis should have been given to survey 
estimates at the subnational level'. Further, 'it is possible that the WFS has erred in the 
direction of over-scattered sample designs. Certainly in some countries the use of more 
heavily clustered samples would have been more economical' (Verma 1981 a). 

12 



2.4 INTERPRETATION OF SAMPLING ERRORS 

In section 2.2 the concept of sampling error was defined in terms of variability between 
estimates from different samples. In this section measures of sampling error such as 
variance, standard error and confidence intervals will be defined and interpreted more 
precisely. 

Suppose that Ys is a certain quantity such as a mean estimated from a particular 
sample s (it is assumed throughout for convenience that no measurement or other non­
sampling errors are present). Different samples would give different values of y8 ; the dis­
tribution of Ys from all possible samples (with given design and selection probabilities) 
is called its sampling distribution. The sampling distribution of Ys is the theoretical dis­
tribution of the estimate over all possible samples, each sample weighted by its pro­
bability of occurrence, P 8 , depending upon the sample design applied to a fixed population 
of characteristics. The expected value of the estimate is the mean of the sampling dis­
tribution: 

E(Y) = L Ps ' Ys 
s 

where I: is the sum over all possible samples. 
s 

(2.1) 

The variance of y is measured by the square of the difference between a sample 
estimate Ys and its expected value over all possible samples, E(Y), averaged over all 
possible samples, ie 

Var (Y) = L Ps • [y8 - E(y)] 2 (2.2) 

The standard error, Uy, is the square root of the variance. The sampling distribution 
represents the random fluctuations of Ys due to the specific sample design, and this 
variability is measured by the standard error. 

In a practical situation, results from only one sample are available. However, inherent 
in a properly designed probability sample is the ability to provide estimates of the samp­
ling error from the results of the one sample that is available. This is because the ob­
served variability between units within a sample can provide an estimate of variability 
between different samples. It should be appreciated that the estimated standard error, 
say se (Y), from a particular sample does not measure the actual deviation Ys - E(Y) of 
that particular sample mean from the expected value; rather it is an estimate of a para­
meter ay of the sampling distribution of this deviation. In fact it is not necessary for 
Ys and se (y) to be estimates from the same data. 

Inferences from sample surveys are made in terms of probability intervals, usually 
confidence intervals. These intervals are defined on the basis of the sampling distribution 
of Ys (ie the distribution of the estimates Ys obtained from all possible samples with 
given design and selection probabilities). In many practical situations this distribution 
is approximately normal. For values of Ys distributed normally around their mean E(y) 
with standard deviation Uy, the probability P of Ys being in the interval ± t times the 
standard error on either side of the expected value, ie the interval E(y) ± t • Uy, is given 
by the following table: 

t 

p 

0.67 

0.50 

1.00 

0.68 

1.64 

0.90 

1.96 

0.95 

2.58 

0.99 

3.00 

0.997 

3.29 

0.999 
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For example, 68 per cent of sample estimates Ys are expected to lie within the range 
E(Y) ± ay; similarly 95 per cent lie within the range E(Y) ± 2 • ay approximately. 

In practice we interpret such an interval as follows. The estimated confidence interval 

Ys ± t ' se (y) (2.3) 

contains the expected value E(Y) with probability (or confidence) P, where, for the 
assumed normal distribution, the relationship between t and P is given by the above 
table. 

As noted above, in many practical situations the sampling distribution of Ys is ap­
proximately normal. Just how good that approximation is depends on the underlying 
distribution of the characteristics of the population and on the sample design. The 
approximation improves with increasing sample size and, for most samples encountered 
in practical survey research, the assumption of normality leads to errors that are small 
compared to other sources of error. Note that the fact of this approach to normality 
of the sampling distribution of large samples does not depend on the normality of the 
distribution of elements in the population. The distribution of many characteristics 
in the population is, in fact, far from normal. For example, the number of children 
ever born to married women in a cross-sectional survey may be highly skewed to the 
left; however the means estimated from different samples of reasonable size are likely 
to be approximately normally distributed around the expected value. 

For clustered samples based on a small number of clusters (say less than about 30), 
it is more appropriate to use the Student t-distribution, with 'degrees of freedom' ( df) 
equal to 

L (ah - 1) = L ah - H, 
h h 

where ah is the number of clusters in stratum h and ~ the sum over all H strata, ie df is 
h 

equal to the total number of clusters less the number of strata. For example, for a sample 
of 20 clusters with 2 selections per stratum from 10 strata, 

df = 20 - 10 = 10 

and the confidence intervals are 

t(df = 10) 
p 

0.70 
0.50 

1.05 
0.68 

1.81 
0.90 

2.23 
0.95 

3.17 
0.99 

3.96 
0.997 

4.59 
0.999 

Compared with the normal distribution (which corresponds to infinite df), the above 
distribution gives a broader interval (ie a larger value of t in equation 2.3 for the same 
level of confidence); for example the 95 per cent of confidence interval is Ys ± 2.23 
SE(Y), compared with Ys ± 1.96 SE(y) for the normal distribution. This difference is 
larger at higher values of t. 

Some statisticians prefer to publish information on sampling errors in terms of the 
standard error, to permit the reader to construct intervals and make inferences according 
to his needs. However, for the general reader it is more useful to know the range within 
which the 'true' value of interest can be expected to lie with a certain level of confidence. 
While different levels of confidence may be chosen for different purposes, a common 
and convenient criterion (followed, for example, in most WFS First Country Reports) 
asserts that the population value to be estimated from the sample lies within a range 
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twice the standard error on either side of the sample value. This can be asserted with 
a high (95 per cent) level of confidence, ie one can say that the chances are only one 
in twenty that the true value is outside this range. For example, if the observed sample 
mean for a variable is 3 .5 and the estimated standard error is 0.2, then for practical 
purposes, apart from non-sampling errors and other biases, the true population value of 
interest lies in the range 

3.5 ± 2 (0.2) = 3.1 to 3.9 

with 95 per cent confidence. 

The question of whether or not two subgroups of the sample differ significantly in a 
particular characteristic can be dealt with in a similar way. One first obtains the observed 
difference, found in the sample; one then estimates the standard error of the difference 
and this leads to the 9 5 per cent confidence limits for the difference. If a difference of 
zero would fall outside these limits, then it can be said that the hypothesis of no dif­
ference is rejected with 95 per cent confidence, or, in other words, that the groups differ 
significantly. 

As an example, suppose that two group means are being compared: 

Group 1 observed mean 3 .5 

Group 2 observed mean 3 .0 

Observed difference: 3.5 - 3.0 = 0.5 

Suppose the standard error of the difference is estimated at 0.15. Then one can assert 
(with 95 per cent confidence) that the true difference is in the range 

0.5±2(0.15) = 0.2to0.8, 

and the observed difference is said to be 'statistically significant', because we have more 
than 95 per cent confidence that it is not zero. 

For a lucid discussion on the use and misuse of tests of significance in social research, 
see Kish (1959). 
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3 Procedures for Estimation of Sampling Errors 

3.1 INTRODUCTION 

Practical methods of computing sampling errors need to be general enough to cover 
the complexities and variations which frequently arise in sample designs for large-scale 
surveys. The estimation procedure must take into account the sample structure, in 
particular its clustering and stratification. At the same time the procedures should be 
simple enough to provide easy computational formulae so as to permit, economically, 
the detailed computations required for the numerous estimates produced by the survey, 

In a multi-stage design, each stage of selection makes a contribution to the total 
sampling error. The contribution of the first stage results from the fact that only some 
of the first-stage, or primary, sampling units (PSUs) in the population are taken into the 
sample. The contribution of the second stage results from the fact that only some of the 
second-stage units (SSUs) from within the selected PSUs appear in the sample, and so 
on. For sample design and for the evaluation of sample designs, decomposition of the 
total sampling error into its components according to sampling stages (along with in­
formation about costs, etc) may be required. However, as a guide for orientation towards 
and interpretation of survey results, the user requires information on the overall magni­
tude of the sampling error, without requiring its decomposition into contributions of 
individual stages. This section describes practical methods for estimating the overall 
sampling error for complex samples. 

The essential procedure for estimating sampling errors for complex samples is illus­
trated by the use of simple replicates or interpenetrating samples first introduced by 
Mahalanobis (1944 ). If the sample is divided into independent subsamples or repli­
cations, each of exactly the same design, then each of the subsamples yields a valid 
estimate of the population parameter of interest. A measure of variability among the 
replications provides an estimation of the sampling variance. For example, if the sample 
is divided into c independent replications, and Yi is the estimate of a sample total from 
replication i, then the estimated variance of the averaged estimate of the total 

is 

y =I yifc 
i 

1 
var (y) = -(--l) L (Yi - Y)2 

cc- i 
(3.1) 

The use of interpenetrating samples provides an easy and convenient method of 
estimating variance, irrespective of the complexity of the design within any replication. 
Essentially the same approach is used for estimating sampling errors for other complex 
sample designs. For example, each independently selected primary sampling unit (PSU) 
from a stratum can provide a valid estimation for the stratum, so that a measure of vari­
ability among the PSUs within strata provides an estimate of the sampling variance. 
The procedure is described in detail in the remainder of this section. 

3.2 A PRACTICAL METHOD OF COMPUTING SAMPLING ERRORS 

Under certain assumptions, usually not too restrictive in practical situations, sampling 
errors for a variety of statistics, such as proportions, means, ratios and their differences, 
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over the total sample as well as over diverse subclasses, can be obtained on the basis 
of values totalled at the level of primary sampling unit, ie on the basis of PSU totals. 
The sample design and selection within individual PSUs may be complex and differ 
from one PSU to another, without affecting the form of the variance estimation to be 
described below. The method takes into account the components of variance from all, 
including the second and subsequent, sampling stages, even though no explicit reference 
appears in the computational formulae to any stage beyond the first. Essentially this is 
because the variance contributed by the later stages is reflected in the observed vari­
ation among first-stage units. A review of practical methods of computing sampling errors 
is provided by Kalton (1977). 

The basic assumptions required are (a) that two or more PSUs are drawn from each 
stratum, and (b) that these selections are drawn independently of one another, with 
random choice and with replacement. These conditions are seldom satisfied exactly 
in practical sample designs; however, as described later (section 3.3), they are reasonably 
well approximated in many situations. 

Suppose that the total sampling frame is divided into a number of strata, that PSUs 
are selected independently with replacement from each stratum, and that a subsample 
is selected in each selected PSU, in whatever way, so as to give a final sample of ultimate 
units. 

Let Yhii be the value for ultimate unit j in PSU i from stratum h and let whii be the 
weight associated with the unit (introduced to compensate for unequal probabilities of 
selection, differential non-response, etc). Then 

Yhi = I Yhij • WJtlj (3.2) 
j 

is the appropriately weighted estimated total for the sample selected from PSU i, scaled 
in such a way that 

Yh = L Yhi and Y = L Yh (3.3) 

are the estimated stratum total and sample total, respectively. The variance of the totals 
is estimated as 

var (Yh) = ah • L (Yhi - Yh/ah)2 = ~ (I Yfii - yfi) 
ah - 1 ah - 1 i ah 

and (3.4) 

var (y) = I var (Yh) 
h 

where ah is the number of PSUs selected from stratum h. The reader may note that the 
above is analogous to the formula for estimating the variance of a sample total for a 
stratified random sample. 

Variance of Ratios 

Generally, sample surveys are used to estimate ratios (rather than totals), of the form 

I;yhi 
=--= (3.5) 

x 

For example, in a sample of women Yhii might be the number of living children to woman 
j (in PSU i, stratum h), and xhii her total number of children ever born; then the ratio r 
estimates the proportion of surviving children. 
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Ordinary means and proportions are just special cases of ratios. In a mean, the de­
nominator is simply a count variable, ie, xhii = 1 for all ultimate units concerned. For 
a proportion, in addition the numerator is a dichotomy, with Yhii = 1 or 0 depending 
on whether or not the unit possesses the characteristic whose proportion is being esti­
mated. Since ratios and their differences are commonly encountered estimates from 
sample surveys, it will be useful to list formulae for the estimation of their variance. 
For a detailed treatment with numerous numerical illustrations, see Kish and Hess (1959). 

The variance of a ratio r, to a certain degree of approximation (see below), is 

1 
var (r) = 2 [var (y) + r2 ·var (x) - 2r • cov (x, y)] 

x 
(3.6) 

where var (y) is given by equation 3 .4, with a similar expression for var (x), and the 
covariance is 

COY (x, y) = L: ~ (L: Ybi • Xhi - Yh . xh) 
h ah - 1 i ah 

(3.7) 

The same expressions can be used to compute the variance of r over a subclass of the 
sample: any units not belonging to the subclass are simply ignored. 

Frequently the denominator is a count variable, so that x is the total sample size. 
The terms var (x) and cov (x, y) appear in equation 3 .6 because of variation in cluster 
sizes. 1 Apart from its contribution to var (r), the variation in cluster size also affects 
the statistical bias in the ratio estimator. It has been shown that the bias relative to the 
standard error is less than the coefficient of variation of x, ie 

cv (x) = yvar (x)/x = se (x)/x 

and decreases with the number of sampling units. In a well-designed sample, with little 
variation in cluster size, the bias is usually negligible. However, for subclasses which 
did not form explicit strata for sample selection, the effective cluster size may vary 
greatly, as may be the case with very small or ill-distributed subclasses of the sample. 
For a stratified clustered sample, cv(x) is estimated by 

cv2 (x) = ~ [ L ~ (L: xfu - xfi)] 
x h % 1 i ah 

Variance of the Difference between Two Ratios 

Turning now to the difference of two ratios 
I 

I y y 
r-r = --., 

x x 

its variance is given by 

var (r - r') = var (r) +var (r') - 2 cov (r, r') 

where the variance terms are given by equation 3.6, and 

( 
I) 1 I I I I I I cov r,r = --, [cov(y,y)+r·r cov(x,x)-r•cov(y ,x)-r ·cov(y,x)] 

x·x 

with cov(x, y), etc defined as in the form 3 .7. 

(3.8) 

(3.9) 

(3.10) 

1 The term 'cluster size' is used here to refer to the number of ultimate sampling units selected in 
thePSU. 
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A difference of ratios can arise in a number of ways. One may compare, for example, 
two different characteristics (y and y') over the same sample (x = x'). The most common 
situation, however, is the comparison of the same characteristic (same variate in the 
numerator) between two subclasses of the sample defined in terms of different categories 
of the same characteristic in the denominator. The classes are usually mutually exclusive 
but not necessarily exhaustive, for example, comparison of mean age at marriage among 
two age groups of women, eg 25-34 and 35-44, or comparison of the proportion of 
children dead between urban and rural women. The same computational formulae apply 
in different situations. The covariance term in equation 3 .9 arises because the same 
ultimate units appear in both ratios or because the units come from the same sample 
clusters. The statistical bias in (r - r') can become large in relation to -./var (r - r') if the 
covariance term is large and positive, or if the biases in r and r' are very different. 

Other Functions of Ratios 

By introducing the transformation 

1 
Zhij = - (Yhij - r ' Xhij) 

x 

equation 3 .6 can be expressed more simply as 

var (r) =I [~(I zfu - z~)] 
h ah 1 i ah 

where 

and 

z = I zh = y - r • x = 0 by definition. 
h 

(3 .11) 

(3.12) 

In fact equation 3.12 holds for the ratio of two ratios, the product of two ratios, and 
for the difference or any linear combination of ratios, with appropriately defined vari­
able zhii· 

For a difference of two ratios r 11 = (r - r'), equation 3 .12 gives var (r - r') with 

11 1 1 I / / 

Zhij ~(YhiJ - r • Xwj)-7(Yhij - r • Xhij) 

(zhij - Z~j) (3.13) 

Similarly for the sum of two ratios r
11 = (r + r'), we have 

11 1 1 I / I 
Zhij - (Yhij - rxhij) + I (Yhij - r Xhij) 

x x 

(3.14) 

The generalization of the above to any linear combination of ratios is straightforward. 

For the ratio of two ratios (double ratio), r 11 = r/r', we have 

11 1 ( /1 I Zhij = I Zhij - r • Zwj) 
r 

and for the product of two ratios, r" = r • r' 

(3 .15) 

(3.16) 
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An example of a double ratio is a 'relative fertility rate'. A fertility rate is itself a ratio, 
the numerator consisting of the number of births to a specified category of women 
during a specified interval of time, and the denominator being the number of person-years 
of exposure to childbearing for those women during the same interval. One might be 
interested in the distribution of fertility rates for different ages, or different categories 
of some kind, rather than their absolute values. The distribution is given by the 'relative 
fertility rate', ie the fertility rate of any category (such as an age group) divided by the 
overall rate. This is a double ratio. 

An example of the product of two ratios is provided by age-specific fertility rates 
computed from combined data coming from a household survey and a fertility survey 
of a sample of ever-married women, as described in section 4. 7 below. 

3.3 APPLICATIONS TO PRACTICAL DESIGNS 

The simplified variance estimation procedures described above are based on the assump­
tion that two or more PSUs are selected independently and with replacement from each 
stratum. Frequently, actual designs do not satisfy these conditions exactly, and certain 
approximations are involved in fitting the model to them. 

(1) Sampling without Replacement 

In most practical situations it is 1.1referable to select PSUs without replacement (ie with­
out allowing any unit to appear more than once in the sample), since the resulting vari­
ance may be somewhat smaller than that obtained using sampling with replacement. 
Consequently, the procedure described above for with-replacement sampling would 
tend to overestimate the variance of a without-replacement sample. However, taking 
this feature of the design into account would require additional computation of other 
components of the variance and the use of complicated formulae. 

Fortunately in most situations the overestimation involved is entirely trivial; when 
that is not the case, a better approximation is often provided by introducing the 'finite 
population correction' (1 - fh) into equation 3 .4, ie 

var(yh) = (1- fh) • ~ (LY~i _ Y~) 
ah - 1 i ah 

where fh is the overall sampling fraction in stratum h. 

(2) Systematic Sampling 

Systematic sampling2 serves as a practical and convenient method of selecting units 
from an ordered list; often the ordering for selecting PS Us is geographical, as is the case 
in most WFS samples. The combined effect of ordering and selecting by applying a 
constant interval to the list can be seen as introducing 'implicit' stratification, with one 
random selection from each implicit stratum. To compute the variance it is usual to 
imagine the implicit strata grouped in pairs to give 'pseudo-strata' and to regard each pair 
of adjacent selections as having been drawn independently from a single pseudo-stratum. 
This procedure, called the collapsed strata technique, may overestimate the variance of 
the systematic sample. In most practical situations, the overestimation is unimportant 
and is preferable to sacrificing the convenience (and probably somewhat lower variance) 
of systematic sampling. 

2 That is, selection from a list at a fixed interval, with a random start. 
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Often systematic sampling is done within explicit strata. In this situation, the pseudo­
strata formed by collapsing implicit strata should be created in such a way as not to cut 
across the original explicit strata. Pairing of implicit strata will create a pro.blem if there 
is an odd number to be dealt with; in this case one of the pseudo-strata can be made 
with three PSUs. Other variants of the above scheme are possible. In place of comparing 
L PSUs in L/2 pairs, the variance may be estimated by taking L-1 successive differences 
among the L units (ie taking the difference between PS Us 1 and 2, between 2 and 3, 
between 3 and 4, etc). 

(3) Single Primary Selection per Stratum 

To achieve an efficient sampling design, explicit stratification is sometimes carried to a 
point where only one PSU per stratum is selected into the sample. The Malaysia Family 
and Fertility Survey provides such an example among WFS surveys: here the rural sector 
was divided into 70 strata and one PSU per stratum was selected. 

The situation in this case is similar to that in systematic sampling. An exact measure 
of variance must be abandoned in favour of an approximation based on the collapsed 
strata technique, in which the actual strata may be paired so that each of the resulting 
pseudo-strata is assumed to have a pair of independent selections. (Alternatively, one 
may use L-1 linked comparisons among L PSUs.) To reduce the overestimation of the 
variance involved, one should pair strata which are most alike. This pairing has to be done 
on the basis of likeness between strata; and not between the PS Us which happen to be 
selected: otherwise the variance may be seriously underestimated. This situation differs 
from pairing in a systematic sample in that no obvious criterion (such as position in an 
ordered list) may exist for determining the most appropriate pairing, thus requiring 
explicit examination of characteristics of individual strata. For this purpose information 
on these characteristics, perhaps on the basis of criteria used for stratification, must be 
compiled at the time of sampling and preserved. This is by no means an automatic process, 
as was demonstrated by the difficulties experienced in computing sampling errors for 
the above-mentioned survey in Malaysia. 

(4) Grouping of PSUs 

In samples involving large numbers of PSUs with small samples selected per PSU, one 
may, for convenience and economy, group PS Us appropriately to form pseudo-PS Us 
for the purpose of computing sampling errors. If the grouping of PSUs is done on a 
random basis (within each stratum separately), the overestimation of the variance in­
volved in the above procedure is kept small. 3 Two examples of this technique applied 
to WFS samples are the following. 

(a) In certain cases such as Nepal and Malaysia, although the rural sample employed 
a multi-stage design, in the urban sector households were selected directly using 
single-stage random or systematic sampling. To compute sampling errors for the 
total sample in a convenient manner, the urban sample households could be grouped 
randomly into pseudo-clusters similar in size to the actual clusters in the rural sector. 

3 This procedure is similar to the following. Suppose that the units in a simple random sample are 
grouped at random into 'pseudo-PSUs'. Variance for the actual random sample may be estimated 
reasonably well by treating the sample as if it were a clustered sample with the random groups of 
ultimate units as actual PSUs. This is because the 'clusters' formed by random grouping of elements 
are expected to have zero intracluster correlation (see p 29 below) so that the expected value of the 
computed variance is approximately the same as that for the simple random sample. 
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(b) The sample for the Sri Lanka Fertility Survey employed a large number (750) of 
clusters many of which were ve1y small (a few actually contained no completed 
interviews). The clusters containing fewer than five interviews were grouped together 
to yield a total of 606 pseudo-clusters which were then used for variance compu­
tation. 

(5) Effective Sampling Stages 

It is useful to clarify certain ambiguities which may arise in the concept of 'sampling 
stages', and which concern the procedures for computing sampling errors. Multi-stage 
sampling or clustering is introduced to save costs of (a) travel and supervision, and (b) 
sample frame construction, listing and sample selection. The second consideration may 
be particularly important in situations where the available sampling frame does not 
provide area units of sufficiently small size for efficient (cost effective) sample design. 
For example, it has been a common practice in WFS surveys (Turkey, Indonesia, Senegal, 
Syria) to select area units in a number of 'steps' proceeding from larger to smaller cate­
gories of units, but not in such a way as to produce an additional clustering of the smaller 
units. The objective of introducing these steps was to limit the work necessary for con­
structing the sampling frame. Any clustering of the smaller units was avoided by selecting 
only one unit from each larger unit selected (Verma 198la). For example, in one samp­
ling domain of the Turkish Fertility Survey, a number of localities (towns) were selected 
with probability proportional to size (PPS); within each selected locality, ward maps 
and population data were compiled and updated where necessary, and one ward was 
selected with PPS; each ward was mapped in greater detail, divided into segments and 
one segment selected with PPS; finally within each selected ward households were listed 
and sampled with approp1iate probabilities (Haceteppe Institute of Population Studies 
1980). The procedure reduced enormously - in fact, made feasible - the work necessary 
to construct a frame of segments, but the expected sample outcome in no way differed 
from what it would have been had segments been selected directly from a frame of 
segments (actually non-existent). The sample described above is effectively a two-stage 
sample, at least as concerns the sampling errors: segments being the first or primary 
sampling units, and households the second or ultimate stage units. The earlier stages 
or steps not resulting in additional cluste1ing of the sample are not relevant in the context 
of sampling error estimation. 

(6) 'Self-Representing' Units 

The term 'self-representing PSUs' is sometimes used to refer to area units which appear 
in the sample with certainty. This situation has arisen in several WFS surveys, particularly 
in the Latin American region. It usually happens when a certain type of unit referred 
to in the sample design is much larger in population size in one sampling domain (say 
the urban sector) compared to the same type of unit in another (say the rural domain). 
Consider, for example, a multi-stage design in which counties form the first-stage units 
to be selected with PPS, districts within counties form the second-stage units, and house­
holds within districts form the third or ultimate stage units. Suppose, however, that some 
of the counties are so large that they are taken into the sample with certainty and that 
within each a sample of districts is selected directly. The description of such counties 
as 'self-representing PSUs', though common, is misleading and should be avoided. It is 
more appropriate, and necessary for sampling error computation, to describe each such 
county as a stratum, from which (in the above example) a two-stage sample is selected, 
with districts as the PSUs, and households as the SSUs. The other, 'non-self-representing' 
counties belong to the sampling domain with a three-stage design: counties as PSUs, 
districts as SSUs and households as the ultimate stage units. 
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(7) Coding of Sample Structure 

Approp1iate coding of the sample structure, preferably on the micro-level data files 
resulting from the survey, is an essential requirement to ensure that sampling errors 
can be computed properly, taking into account the actual sample design. This is not 
always done, as for example Kish et al (1976) found in their attempts to compute samp­
ling errors for archived survey data in the United States. Information on strata, PSUs 
and sample weights, etc should be defined and coded in the form required for sampling 
error computation. For the computational procedures described in this section, this 
would require the following as a minimum. 

(a) Identification of PSUs as they are to be used for computation, taking into con­
sideration the points made in (4) to (6) above. 

(b) Definition of effective strata, ensuring that at least two PSUs are present in each 
stratum. In samples with systematic selection of PSUs, or when only one PSU is 
selected per stratum, appropriate 'collapsing' or pairing of strata would be required, 
as explained in (2)-(3) above. In such a case, the pseudo-strata so defined should 
be separately identified and .coded. 

(c) Information on sample weights, if applicable. 

Information on various sampling stages (units selected, sampling fractions, etc) 
will be necessary if the total sampling variance is to be decomposed into its components 
according to sampling stage. 

3.4 SAMPLING ERRORS FOR COMPLEX STATISTICS 

The procedures outlined in section 3.2 fall in the class of methods called 'Taylor ex­
pansion method'. This is the approach followed in the WFS package program CLUSTERS 
for computing sampling errors for ratios and certain differences of ratios (Verma and 
Pearce 1978;see annex I). 

Numerical procedures for computing variances of other more complex statistics 
using the Taylor expansion method have been developed (see for example Tepping 
1968; Woodruff 1971; Woodruff and Causey 1976). Basically the method produces 
an estimate of the variance of a statistic based on variances of the linear (first order) 
terms of the Taylor series expansion of the statistic. Suppose we wish to estimate the 
variance of an estimator z which itself is a function of linear estimators (such as sample 
totals) zk. Then it can be shown that, if the sample is sufficiently large for the Taylor 
approximation to be valid, the variance of z is approximated by the variance of a linear 
combination of the zk's, ie 

var(z) =var (~dk • zk) (3.17) 

in which the dk are the partial derivatives of z with respect to zk, dk = az;azk, and are 
treated as constants in equation 3.17. 

As an illustration, consider the ratio z = z 1 /z2 of two sample totals z1 and z2 . We 
have 

z 
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so that, from equation 3 .17, 

var(z) =var(d 1z1 +d 2 z2 ) =ctr var(z 1 )+d~ var(z2 )+2d1d 2 • cov(z1,z2 ) 

This is the same expression as equation 3 .6 above, with z1 = y and z2 = x. 

The procedure for computing var (z) is considerably simplified by introducing the 
variable (Woodruff 1971): 

zhii = I dk • zk,hii 
k 

(3.18) 

where, as before, h, i, j stand for stratum, PSU and ultimate unit respectively. For ex­
ample, for the ratio z = z1 /z2 considered in the above illustration 

1 
zhi· = - (z1 hi' - z' Zz hi') I Zz , I , J 

which can be seen to be identical to equation 3 .11, with z1 = y and z2 = x. 

Similarly one can easily derive equations 3.13-3.16. Equation 3.18 also provides the 
basis for estimating sampling errors of complex statistics in complex samples, such as 
coefficients in a regression equation. 

Two other commonly used methods for estimating variances of complex statistics are 
the balanced repeated replications (BRR) and jackknife repeated replications (JRR) 
methods, These methods are based on the concept of replications described in section 3 .1. 
Essentially, with the BRR method a replication consists of a random half of the total 
sample, and estimates the variance of the entire sample. With the JRR method, a repli­
cation is made up of a random half of one stratum plus the rest of the sample; and 
consequently, each replication measures the variance contributed by a single stratum. 
Empirical illustrations of the use of these methods for computing sampling errors for 
complex statistics from complex samples are given in Kish and Frankel (1974). 

3 .5 VARIABILITY OF VARIAN CE ESTIMATES 

It is important to realize that variance estimates from a sample are themselves subject 
to variability, particularly for samples based on relatively small number of PS Us. As 
noted by Kish et al (197 6: 19), 'sampling theozy, and experience with many and re­
peated computations, teach us not to rely on the precision of individual results, even 
when these are based on samples with a large number of elements'. 

The precision of variance estimates is a complex subject. For reasonably large samples 
with good control to eliminate extr<;me variations in cluster size, a useful approximation 
to the coefficient of variation of a variance estimate is (Kish 1965: 289-91): 

cv2 = 2/df, 

where df is the degrees of freedom, approximately equalling the number of PSUs, less 
the number of strata. For example, when two PSUs are selected from each of H strata 
(the common paired selection model), 

df = (2H-H) = H, 

so that 
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CV = -j2fH, 

Thus, for a sample with 100 PSUs from 50 strata, 

CV = ./2f5o = 0.2, 

while with only 25 PSUs (from 12 or 13 strata) 

CV = 0.4. 

3.6 CONFOUNDING OF SAMPLING AND RESPONSE VARIANCES IN 
COMPUTED SAMPLING ERRORS 

In estimating sampling variance from equations such as 3.2-3.4, the element values 
(Yhij, xhij) are meant to be free from non-sampling variability, ie they are the expected 
values for particular elements obtained by all possible measurements under the same 
essential conditions (see section 2 .2). In practice, a particular survey yields only a single 
set of observed values, resulting in some degree of confounding of sampling and non­
sampling variance in the usual estimation of the former. 

In explaining this confounding, it is useful to distinguish between two components 
of response (or other measurement) variance: correlated response errors and uncor­
related response errors. Each interviewer, supervisor or coder, etc may have his own 
bias, which affects all the interviews which make up his workload. In so far as individual 
survey workers have different average effects on their respective workloads, they intro­
duce errors which are correlated for all interviews within their individual workloads. 
In addition to these correlated errors, there may be chance factors which affect responses 
obtained from individual respondents independently of the particular survey worker 
involved. These are uncorrelated response errors. (For a fuller account see Hansen et al 
1961.) 

From a single survey, there is no way to separate out the confounding of uncorrelated 
(or simple) response errors from the usual estimation of sampling errors. This would 
require at least two independent measurements on each respondent (for a description 
of methodology and application to WFS data, see O'Muircheartaigh and Markwardt 
1981, and O'Muircheartaigh 1982). 

The relation of correlated response errors to the usual estimates of sampling errors 
is more complex. In a sense, survey workers impose their own 'clustering' on the sample 
of observations because of their individual biases. In so far as this clustering coincides 
with the geographic clustering of the sample itself and different fieldworkers are em­
ployed in different PSUs in each stratum (as for example will be the case if fixed enume­
rators are used, one for each sample cluster), then the usual estimate of sampling error 
fully includes the contribution of correlated response errors due to interviewer bias. 
The situation with most WFS surveys is rather different. Usually interviewers are or­
ganized in teams of four or five who share work in each PSU, and each team completes 
fieldwork in a number of PSUs, usually covering all PSUs in a stratum. With such an 
arrangement, the estimated sampling errors in the main do not include the contribution 
of correlated response variance due to the interviewer effect. Simple response variance 
is of course included as always. 
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4 Patterns of Variation and Portability 

4.1 OBJECTIVES OF INVESTIGATION 

For a number of reasons it is useful to investigate the patterns of variation of sampling 
error results across variables, across sample subclasses and across surveys, and to relate 
these patterns to the structure of the sample. These reasons are discussed below. 

(1) Extrapolation of Computed Results 

Generally the estimates of interest from a lar_se-scale multi-purpose survey are too num­
erous for sampling errors to be computed for all of them. For example, the detailed 
cross-tabulations recommended for WFS surveys run into thousands of cells (WFS 1977). 
Ideally, the user of survey results needs to be able to obtain at least an approximate 
value of the standard error not only for the estimate in any cell of the detailed tabu­
lations, but also for differences and distributions across cells. This can only be achieved 
by providing some means of extrapolation of errors from computations for selected 
variables and sample categories, to other variables and categories for which actual com­
putation was not performed. This requires a study of the patterns of variation of sampling 
errors across variables and subclasses. 

This may be particularly relevant when all survey estimates have to be reproduced 
for a number of reporting domains. Examples are WFS surveys in Fiji, where the entire 
set of tabulations is repeated for two ethnic groups and of course for the total sample; 
and Turkey and Indonesia where a substantial number of tables are repeated by region 
and type of place of residence. In view of the greatly increased number of survey esti­
mates involved, extrapolation of sampling error results across major reporting domains 
becomes necessary. 

A similar consideration is often involved in repetitive surveys with the same or similar 
design and content. Under such conditions, the standard error or some statistic derived 
from it may be relatively stable from one survey to the next, so that once the variance 
pattern is established in the beginning, it can be utilized to predict sampling errors for 
subsequent rounds. 

(2) Summarization for Presentation 

While it is desirable to provide the user of survey results with all the required information 
on sampling errors, it is necessary to do so in a way that is convenient for the user and 
that does not obscure the substantive results, which are after all of primary interest. 

This presents a similar problem to that discussed in (1). Even if the sampling errors 
for all the published estimates were computed, it would not be feasible to publish them: 
they would double the volume of the tables in the report, even without considering the 
sampling errors of differences. It is essential to provide the user with some simple way 
of computing approximate sampling errors for any estimates and differences in which 
he may be interested. Once again, this implies some means of extrapolation and this, 
in tum, requires a knowledge of the patterns of variation of sampling errors. 

(3) Smoothing of Computed Results 

As noted earlier, sampling errors computed from sample data are themselves subject 
to considerable variability, particularly for samples based on relatively small numbers 
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of PSUs. In fact it may often be preferable to use results appropriately averaged over 
a number of computations, rather than to rely on the precision of individual compu­
tations. 

(4) Sample Design and Evaluation 

Apart from indicating the precision of existing survey estimates, the objective of sampling 
error computation is to evaluate how a particular design has fared and to provide data 
for designing future samples. For this, it is necessary to explore patterns of variation 
of sampling errors as related to important features of the sample structure, such as 
clustering, stratification and weighting. In fact, as will be seen later, the relationship 
between sampling errors and sample structure is useful also in the extrapolation, sum­
marization and smoothing of computed results within a given survey. 

For the various reasons stated above, it is necessary to combine somehow the results 
from computations for different variables and subclasses on the basis of which patterns 
of variation can be established more clearly. Pooling of results for different variables 
is more problematic (Kish et al 1976), but perhaps also less critical since the number of 
variables involved is usually substantially smaller than the number of subclasses of interest, 
since the sample can be divided into subgroups in numerous ways. In any case, it is 
important to recognize that, while smoothing, pooling and extrapolation of computed 
sampling errors is often necessary and desirable, there are risks involved in doing this. 
Excessive or careless application of these procedures can hide actual variation, distort 
the result and mislead the user. The only guarantee against this is to base extrapolation 
and smoothing on an extensive and wide variety of actual computations, covering many 
variables and subclasses of different types, and to check how well the smoothed results 
fit the actual computations. 

4.2 PORTABILITY 

The Concept 

To meet the requirements for extrapolation, summarization and smoothing of computed 
results, it is necessary to search for portable measures of sampling variability. The term 
'portability', introduced by Kish, refers to the possibility of carrying over from one 
subclass to another, from one variable to another or from one survey to another, the 
conclusions drawn regarding the sampling error. To illustrate the concept, suppose that 
a number of self-weighting simple random samples (SRS) of different sizes are drawn 
from a population to measure the same set of variables. The variance of an estimated 

1-f 
mean y for a sample of size n is -- a2

, which is estimated by 
n 

1-f[ (y·-Y)
2

] 1-f sr2 (y) = -- 2: J = -- · s2
, say 

n i n-1 n 
(4.1) 

While the standard error varies inversely as n 112
, the standard deviation, a, is the same 

for different samples. It measures the root mean square deviation of individual values 
Yi from the mean and is portable across samples. 

Different measures are portable to different degrees. The standard error is specific 
to the estimate for which it is computed, and its magnitude depends upon a number 
of factors such as: 

1 the nature of the estimate; 
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2 its units of measurement (scale) and magnitude; 

3 its variability in the population; 

4 the sample size; 

5 the sample design (clustering, stratification, weighting, cluster size, etc); 

6 the nature and size of the sampling units; 

7 for sample subclasses, their nature and distribution across sample clusters. 

Standard errors (se) computed for one statistic can, at best, be imputed directly only 
to essentially similar statistics, based on samples of similar size and design. Various 
derived measures of se are introduced to control, ie to reduce, the effect of some of the 
above factors, and hence enhance the portability of the measure across subclasses, vari­
ables and sample designs. In the example given above, the effect of sample size (n) was 
controlled by introducing a in place of the actual se. 

Zarcovich (1979) illustrates in detail with practical examples how the estimated 
coefficient of variation (standard error divided by the mean, se (Y)/Y) can be stable 
across a number of repetitive surveys with similar design, size and content, thus elimi­
nating the need for fresh calculations in each survey round. This measure controls for 
factor 2 above, namely for units of measurement and magnitude of the estimate. 

Two more useful and widely used measures of portability are the design factor (deft) 
and rate of homogeneity (roh) described below. 

Design Factor (deft) 

An extremely useful measure in this connection is the design factor (deft),4 defined 
as the ratio of the estimated standard error for the actual design (se) to the estimated 
standard error for a simple random sample (SRS) of the same size (sr): 

deft = se/sr (4.2) 

This measure is more portable than se, since it does not depend upon factors which 
affect both se and sr in the same way, factors such as units of measurement, magnitude 
of the estimate, its variability in the population, and above all, sample size. Deft depends 
upon other factors such as the nature of the estimator, sample design, and type and size 
of sampling units. Deft is a summary measure of the effects of departure of the actual 
sample design from SRS. It is a comprehensive factor which attempts to summarize 
the effect of various complexities in the design, especially those of clustering and strati­
fication. It may include even the effect of ratio or regression estimation, of double 
sampling and of varied sampling fractions. For these reasons many samplers include the 
ratio se/sr as a routine item in the output of variance computations. 

To estimate deft from a sample it is necessary to estimate both se and sr. As described 
in section 3, se for multi-stage complex sample designs can, in many practical situations, 
be estimated simply from quantities aggregated at the level of PSUs, without explicit 

4 We use the term 'design factor' to mean the ratio of actual standard error to SRS standard error; 
the term 'design effect' (deff) is normally used for the ratio of the variances. 

deff = deft 2 = se 2 /sr 2 
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reference to subsampling procedures within PSUs. An equally convenient result of samp­
ling theory is that, in many practical situations, the sampling error corresponding to an 
SRS can be estimated from a complex sample simply by ignoring the complexity of the 
actual design. For example, for the ratio r defined in equation 3.5 the SRS variance 
is approximately 

1 
sr2 (r) = --

1 
• L(whii • zfui)/Lwwj, with zwi = Yhii - r • xwi 

n-
(4.3) 5 

even though the actual observations (Yhij, xwj) are from a complex sample rather than 
from an SRS. 

Rate of Homogeneity (roh) 

For a given variable and a given number and type of clusters and subsampling procedure 
used, the value of deft tends t6 increase with increasing cluster size. To control this 
effect, Kish (1965) introduced a synthetic measure roh (rate of homogeneity) defined as 

deft 2 = 1 + (b - 1) roh (4.4) 

where b is the average cluster size. The model is based on the concept of intraclass cor­
relation which measures the degree of correlation between members of a cluster. Equation 
4.4 has been developed for self-weighting samples in the absence of extreme variation 
in cluster sizes. Roh is a synthetic measure introduced with the aim of measuring the 
average degree to which values of a particular variable are homogeneous within PSUs, 
relative to that variable's overall variability. 

The following illustration may clarify the relationship of deft and roh to cluster size 
b. Suppose that a two-stage sample of size n = 2500 is drawn by selecting 49 clusters, 
and by selecting at random an average of b = 51 ultimate units per cluster. Assume that 
for a particular variable deft2 = 2 for this sample; in other words, the variance of the 
clustered sample is twice as large as that of an SRS of the same size. The implication is 
that an SRS of size n' = n/ deft 2 = 1250 would have given the same sampling precision. 
(It is important to realize that the above statement is true only for estimates based on 
the total sample; as discussed later, defts can be much smaller for subclasses.) The implied 
value of roh for the variable is 

deft2 
- 1 

roh = 0.02 
b-1 50 

Now suppose that, retaining the same number of clusters, the average sample per 
cluster is reduced to b = 26. One expects roh to be unchanged (ie it is portable between 
the two samples) because the nature of the sampling units and the sampling procedure 
have not changed. The design effect becomes 

deft2 = 1 + 0.02 (26-1) = 1.5 

In the above sense, roh removes the effect of b in deft, and is a more portable measure. 
However, it should be emphasized that roh is specific to a particular variable, sample 
design and type of sampling unit. Note that for the simple random sample, halving the 
sample size doubles the sampling variance. For the clustered sample in this example, 

5 The relative bias involved in this procedure is approximately (deft' - l)/n, which is negligible in 
most situations with reasonably large sample size. In fact this procedure can be used to estimate the 
effect on sampling error of particular features such as stratification or additional area stages, by 
repeating the calculation ignoring that particular feature of the design. Illustrations are provided in 
Verma et al (1980). 
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halving the sample size (but retaining the same number of clusters) increases the variance 
by a factor of only 1.5. 

4.3 MODELLING OF SAMPLING ERRORS FOR SUBCLASS MEANS 

The measures deft and rah provide empirically useful means of modelling sampling 
errors across diverse subclasses of a sample. In this section we consider how, for a given 
substantive variable or group of similar va1iables, standard errors of ratios, means and 
proportions for subclasses (se9 ) may be related to those for the total sample (set). When 
considering subclasses instead of the entire sample there are three important points 
to bear in mind: 

In so far as a subclass is spread evenly over all sample clusters, the effective cluster 
size (ie sample size per PSU) is reduced compared with that for the total sample, 
the reduced figure being roughly proportional to the subclass size. 

2 However, this is not the case for subclasses which are confined to a subset of sample 
clusters. Furthermore, the estimates of variance tend to be less stable in this case since 
they are based on only a subset of the PS Us. 

3 In any case, subclasses are rarely uniformly distributed, so that the coefficient of 
variation of cluster size tends to be higher for a subclass than for the total sample. 
This would tend to increase not only the error variance but also the bias in ratio 
estimation. 

The variation of sampling error with subclass size is therefore related to how evenly 
the subclass is distributed over sample clusters. In this respect it is useful to distinguish 
three types of subclasses (Kish et al 1976). First, certain classes such as groups defined 
in terms of demographic characteristics (age, sex, marriage duration, etc) tend to be 
more or less uniformly distributed geographically across the whole population, and 
hence across the sample clusters. These may be called cross-classes. At the opposite 
end we have geographic classes which are completely segregated into separate clusters, 
ie a whole cluster either belongs or does not belong to the subclass. Examples are regions, 
or urban-rural domains, of a country. Other classes, such as particular ethnic, occupa­
tional or other socio-economic groupings, while less well distributed than cross-classes, 
are not as completely segregated as geographic classes. For example, higher educational 
groups, and even more so, non-farming occupations tend to be clustered in, though 
not confined to, urban areas. These are termed mixed classes. 

Sampling En-ors for Cross-Classes 

For a given variable we may expect the subclass design factor, deft9 , to be smaller than 
total sample deftt, since the effective cluster size decreases proportionately with de­
creasing cross-class size. For small cross-classes in a self-weighting sample, the effective 
sample would tend towards SRS, ie <lefts would tend towards unity. Taking account of 
the above effect, one might attempt to give a more precise expression to the relationship 
between sampling errors for subclasses and the total sample by adopting a model based 
on equation 4.4. Thus 

(deft; - I) rahs • (bs - 1) 

(deft[ - 1) roht • (bt - 1) 
( 4.5) 
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For a cross-class we assume roh8 = roht so that the right,hand side becomes 

b5 - 1 

bt - 1 

which may be approximated by M8 , the size of the subclass in proportion to the whole 
sample, provided that b8 is substantially greater than 1. Thus 

deft; = 1 + M8 (deftf - 1) (4.6) 

According to the model the departure of deft; from unity is proportional to the size 
of the subclass relative to total sample size. For very small subclasses deft8 tends to 
1.0, ie the effective sample tends to SRS. 

The model needs to be modified for samples which are not self-weighting. While 
the effects of clustering and stratification tend to disappear for very small cross-classes, 
the effect of sample weighting tends to persist. When population variances and sample 
weights are uncorrelated, deft will be found to be greater than 1.0 even for very small 
subclasses; the effect of unequal weights (uncorrelated with the population variance) 
is to multiply the variance of all estimates by the factor (Kish 1965) 

l:nh w~ • l:nh 
L = 2 ' 

(~nh • wh) 
(4.7) 

where nh is the number of units with weight wh. It is found in practice that deft for 
very small cross-classes (and also for differences between such subclasses, see section 
4.4) tends to the value L112 in accordance with equation 4.7. Table 1, from Verma 
et al (1980), demonstrates this on the basis of a very large number of computations. 
The design factors shown are averaged values over groups of similar variables. These 
groups cover most of the estimates of substantive interest from the WFS individual 
questionnaire. The groups are: (a) seven variables concerning nuptiality, such as age at 
marriage, marital and exposure status, marriage dissolution and re-marriage; (b) eleven 
fertility and related variables, such as number of children ever born, the number cur­
rently living, measures of fertility in specified periods, birth intervals, duration of breast­
feeding; (c) six variables concerning fertility preferences, such as son preference, the 
desire to stop childbearing, the additional number of children wanted and the total 
desired family size; ( d) four variables concerning the knowledge of various methods 
of contraception; and (e) ten variables concerning contraceptive use, by specified method 
and timing of use. The row 'effect of weighting' is L112 computed from equation 4.7 
(equation 6.1 in the source being quoted), and the agreement between this and the 
computed deft is very close indeed. Thus it is convenient to define an adjusted design 
factor deft' excluding the effect of weighting equation 4.7, ie as 

deft = se/sr = L112 • deft' (4.8) 

This allows an expression of the form of equation 4.6 to relate deft8 to deftt for non­
self-weighting samples also. Hence we can write standard errors for the total sample 
(set) and for a subclass (se8 ) as: 

sef =~ • Lt • deft? for the total sample, 
n 

and 
s2 

(4.9) 

se; = ~ • Ls • deft~2 for the subclass. 
Ilg 

To relate se8 to set, we relate the subclass value to the total sample value for each of 
the three quantities on the right-hand side of equation 4.9. 

31 



Table 1 Deft values for small selected subclasses and subclass differences, compared to estimated increase in standard error due to departure from self-weighting 

Country Indonesia Sri Lanka Bangladesh 

Domain Urban Rural Total Urban Rural Totala Rural Total 
Effects of weightingb 1.06 1.12 1.18 1.19 1.09 1.11 LOO 1.06 

Subclass/differencec (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (1) 
Subclass o 1.9 1.4 1.1 3.1 2.2 2.5 2.6 1.9 2.1 1.5 1.0 1.1 1.7 1.1 1.0 1.7 1.1 1.1 2.4 2.1 
Deft by variable groupd 
Nuptiality 1.07 1.01 1.04 1.19 1.14 1.13 1.25 1.20 1.21 1.17 1.19 1.23 1.02 1.05 1.08 1.07 1.08 1.09 0.99 1.05 
Fertility 1.03 1.05 1.00 1.15 1.16 1.21 1.21 1.21 1.26 1.20 1.16 1.17 1.05 1.06 1.13 1.10 1.09 1.12 1.00 1.05 
Preferences 1.02 1.02 1.06 1.21 1.19 1.25 1.25 1.23 1.29 1.19 1.15 1.26 1.07 1.07 1.10 1.13 1.10 1.12 0.99 1.04 
Knowledge 1.23 1.10 0.96 1.20 1.11 1.12 1.27 1.17 1.21 1.24 1.20 1.25 1.14 1.08 1.08 1.16 1.09 1.16 1.04 1.09 
Use 0.99 1.02 1.08 1.11 1.14 1.07 1.15 1.19 1.13 1.16 1.14 1.24 1.02 1.06 1.08 1.06 1.08 1.12 1.04 1.04 
Average deft (all variables) 1.05 1.04 1.03 1.16 1.15 1.16 1.21 1.20 1.21 1.19 1.16 1.23 1.05 1.06 1.09 1.09 1.09 1.12 1.01 1.05 

a Includes the small 'estate' domain. 
blncrease in standard error due to departure from self-weighting within country or domain estimated from equation 4.7 (equation 6.1 in Verma et al 1980). 
c(l): Subclass 'age 45-49'. 

(2): Difference between subclasses 'age 35-44' and 'age 45-49'. 
(3): Difference between subclasses 'marriage duration 0-4 years' and 'marriage duration 5-9 years'. 

dFor fuller details, see text p 31. 
NOTE: For differences, b" is de!med as half the harmonic mean of b8 for the two subclasses. 
Source: Verma et al (1980) 



For a cross-class, well distributed over the population and hence over sample clusters, 
we have the following relationships: 

The deft values are related by equation 4.6, namely 

deft~2 = 1 +(deft? - 1) • Ms 

where deft' is defined by equation 4.8. 

2 It is reasonable to assume 

( 4.10) 

(4.11) 

since the relative allocation among domains (nh in equation 4.7) for the subclass will 
in general be similar to that for the total sample. Table 1 demonstrates this. 

3 However the values of standard deviations, s8 and St, may differ considerably for 
the following reasons. Subclasses of interest usually correspond to cross-classifications 
introduced to control for factors correlated with the substantive variable being estimated. 
For example, to compare mean fertility among different educational groups, data may be 
classified by age, so as to control for age differences in the educational groups being 
compared. Due to the strong relationship between age and fertility, subclasses defined 
in terms of age may divide the sample into somewhat more homogeneous groups of 
fertility than the total sample. More importantly, the mean value of the fertility measure 
could differ appreciably from one age group to another. 

Generally, s8 and St may be related on the basis of their relationship to their respective 
means. For a dichotomous response leading to cross-classification of proportions (p), 
we have the well-known binomial expression, namely 

s2 ex: p(l -p) ( 4.12) 

For means (m), it may be reasonable to assume the Poisson distribution 

s2 ex: m ( 4.13) 

Little (1978) notes that the above distribution is particularly appropriate for responses 
which are accumulated counts (such as cumulative fertility, ie children ever born). He 
also suggests the following more general relationship. 

s2 ex: m °' (4.14) 

where the exponent a may be estimated empirically by fitting the model to actual com­
putations. With a> 1, the variance would increase more rapidly with m than the Poisson 
distribution (equation 4 .13); and conversely for O'. < 1. a = 0 corresponds to the assump­
tion of homoscedasticity, ie s2 =constant and hences; =st in equation 4.9. 

To provide an illustration of the ideas developed so far, table 2 shows standard errors 
for a number of substantive variables for the total sample of women and for a number 
of subclasses defined as age groups from the Turkish Fertility Survey (Haceteppe Institute 
of Population Studies 1980). A variety of subclass sizes are covered, and some of the 
subclasses are partly overlapping. For each variable, two rows are shown: (a) actually 
computed subclass variances, se;; and (b) se; predicted from total sample set using 
equation 4 .9 on the assumptions that 

• deft~ and deft~ are related by equation 4 .10, since the age ciasses are more or less 
tru~ cross-classes; 
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""" Comparison of (a) computed and (b) predicteda subclass standard errors for selected variables from the Turkish Fertility Survey Table 2 

Subclass (age group) 15-19 15-24 20-24 15-34 25-29 25-34 30-34 35-39 35-44 35-49 40-44 45-49 Total 

Sample size of subclassb 345 1156 811 2678 840 1522 682 644 1255 1753 611 498 4431 

Means 
Age at first marriage 
(a) c 0.095 0.106 0.095 0.144 0.132 0.099 0.088 0.122 0.141 0.072 
(b) 0.091 0.113 0.091 0.124 0.126 0.097 0.086 0.129 0.142 
Children ever born 
(a) 0.044 0.039 0.055 0.053 0.071 0.072 0.109 0.134 0.117 0.111 0.154 0.181 0.060 
(b) 0.164 0.096 0.111 0.070 0.110 0.086 0.120 0.123 0.093 0.081 0.126 0.138 
Total number of 
children desired 
(a) 0.093 0.050 0.055 0.043 0.049 0.052 0.079 0.111 0.079 0.067 0.076 0.087 0.045 
(b) 0.096 0.061 0.067 0.049 0.068 0.056 0.074 0.077 0.061 0.056 0.079 0.089 
Proportions 
Ever heard of pill 
(a) 0.025 0.015 0.016 0.009 0.013 0.010 0.015 0.018 0.016 0.015 0.020 0.023 0.010 
(b) 0.023 0.014 0.016 0.011 0.016 0.013 0.017 0.018 0.014 0.013 0.018 0.020 
Ever used any method 
of contraception 
(a) 0.024 0.017 0.020 0.015 0.020 0.018 0.024 0.022 0.019 0.016 0.025 0.023 0.013 
(b) 0.029 0.018 0.021 0.014 0.020 0.017 0.022 0.022 0.018 0.016 0.023 0.025 
Currently using a 
modern method of 
contraception 
(a) 0.019 0.012 0.015 0.010 0.016 0.013 0.022 0.016 0.012 0.012 0.019 0.026 0.008 
(b) 0.024 0.013 0.016 0.009 0.015 0.011 0.016 0.016 0.013 0.012 0.019 0.026 

a For basis of prediction, see p 3 3. 
bThe actual sample base is smaller for a variable which does not apply to all respondents (eg the variable on current use of contraception). 
cNot defined. 
Source: Haceteppe Institute of Population Studies (1980) 



Table 3 Comparison between computed and predicted subclass standard errors for the estimated mean number of children ever born, by age group of women 

Age group 15-19 15-24 20-24 15-34 25-29 25-34 30-34 35-39 35-44 35-49 40-44 45-49 

Mean children ever born (m) 0.670 1.469 1.809 2.663 2.991 3.570 4.283 5.483 5.713 5.881 5.956 6.303 

Predicted se assuming ss = st 0.164 0.096 0.111 0.070 0.110 0.086 0.120 0.123 0.093 0.081 0.126 0.138 

Predicted se assuming s a: m 0.068 0.059 0.076 0.058 0.096 0.081 0.125 0.146 0.112 0.100 0.155 0.180 

Computed se 0.044 0.039 0.055 0.053 0.071 0.072 0.109 0.134 0.117 0.111 0.154 0.181 

Source: Haceteppe Institute of Population Studies (1980) 



• L; = Lt (which is defined to be 1 since the sample is self-weighting); 

Ell s; = sf, ie standard deviations are assumed equal. 

The agreement between computed and predicted se; is generally good, except in the 
following cases: 

"' for the variable 'children ever born', the predicted values are substantially higher than 
the computed values for younger age groups (and therefore for women with lower 
mean number of children ever born); the opposite is the case for the older age-groups; 

• for the three proportions shown in the table, the discrepancy is generally small except 
for the age group 1 5-19, that is, for the youngest women in the sample. 

These discrepancies are related to the assumption s; =sf made in table 2. There is 
a notable variation in the mean number of children ever born among the age groups, 
the mean increasing from 0.67 for the youngest group (aged 15-19) to 6.30 for the 
oldest (45-49). Assuming s2 cxm (equation 4.13), the agreement between computed 
and predicted values is greatly improved, as shown in table 3. The agreement can be 
further improved by fitting equation 4 .14 or a relation of the form 

s2 = a+ {3.m (4.15) 

There is little variation by age in the mean of the other two variables in equation 4.2, 
so that introducing equations 4.13-4 .15 does not make much difference. 

Regarding the proportions in table 2, the 'correction factor' p (I - p ), from equation 
4.12, is rather insensitive to the value of p in a broad range around p = 0.5. The pro­
portions differ significantly from the overall values only for the youngest age group; 
using equation 4.12, the agreement is considerably improved, as shown in table 4. 

Mixed Classes 

In so far as subclasses are unevenly distributed across sample clusters, the coefficient 
of variation of effective cluster size, and hence the variance (and bias) of ratio estimators, 
will tend to increase. Consequently the design factor for mixed classes is expected to 
decline less rapidly with decreasing subclass size than it does for the well-distributed 
cross-classes. In a study of the pattern of variation of design factor with subclass size, 
Verma et al (1980) propose the following model, generalized from equation 4.10 to 
fit mixed classes: 

deft; = 1 + (deftt - 1). Ma (4.16) 

where a is an empirically determined parameter expected to be in the range 0 to 1, with 
values at the upper end corresponding to cross-classes, and at the lower end to segregated 

Table 4 Standard errors for subclass aged 15-19: comparison between computed and predicted 
values for proportions 

Proportion ever 
used contraception 

Currently using 
modern method 
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Predicted se5 

Assuming s5 = St 

0.029 

0.024 

Computed 

Assumings o: p(l - p) 

0.024 0.024 

0.018 0.019 



or geographic classes. The model was tested on the basis of sampling errors computed 
for different types of variables over many subclasses from WFS surveys in a number of 
countries. This is a useful model for the survey statistician confronted with the task of 
summarizing and extrapolating sampling errors for subclasses, and it may be helpful 
here to sketch the procedure used for estimating a and to reproduce some of the results 
from the above-mentioned study: 

The simple model proposed above assumes that, for a given degree of cross-classedness, the sub­
stantive nature of the variable as well as that of the characteristic defining the subclass need not be 
considered. This, however, is most unlikely to be the case, and thus we estimated c; separately for 
similar groups of variables within subclass groups of similar type and cross-dassedness within each 
country. The estimation procedure is to minimize the sum of squared deviations of the fitted from 
the observed value of <lefts. 

Empirically we found that the goodness of fit improved considerably when the individual points 
were weighted by their relative sample sizes, namely Ms; since the error in the estimation of defts 
is inversely related to the sample size on which it is based, this transformation has the additional 
advantage of producing a more nearly homoscedastic distribution for the disturbance (or error) 
terms. 

Thus the linear form of equation 4.16 from which O:'. is estimated is 

Ys = (1 +a)xs with Ys = -ln(Ms • ds);xs = -ln(Ms), (4 .17) 

where 

ds = (deft~2 -1)/(deft? -1). 

The straight line, equation 4.17, is forced through the origin which corresponds to 
the total sample (Ms = 1), giving 

1 +IX = I;ys ' Xs/I;x; 

and a measure of goodness of fit 

R2 = 1-I; [(1 + ds)Xs -ysJ 2 /I;(ys -Y)2
. 

Table 5, columns (5)-(6) show the measure R 2 and parameter a. Column (4) shows 
the number of cases (a 'case' = a variable estimated over a particular subclass) on which 
the estimate is based; as can be seen from this column, the estimation of a is based on a 
very large set of sampling error computations. The fit is reasonably good: in over 80 
per cent of the sets, R2 exceeds 0.5, and for over 50 per cent, R2 > 0.65. The groups 
of variables in table 5 are the same as described earlier for table 1. Two groups of sub­
classes are considered: demographic subclasses (age, marriage duration, etc) which are 
more nearly cross-classes; and socio-economic subclasses (groups by level of education, 
occupation, etc) which are mixed classes. As expected, a values are larger for the more 
well-distributed demographic subclasses. 

To relate the standard errors ses and set, we refer back to equation 4.9. The standard 
deviations Ss and St are related as already described by equations 4.12-4.15; and often 
it is reasonable to assume Ls = Lt even for ill-distributed mixed classes, since the effect 
of weighting equation 4. 7 is not sensitive to moderate changes in the nh values. How­
ever, for classes tending to be rather segregated (eg higher educational groups, usually 
concentrated in urban areas), it may be necessary to determine Ls by using more ap­
propriate nh values in equation 4.7. 

Geographic Classes 

Subclasses or domains completely segregated into separate clusters and strata present 
no special problems, since one may compute sampling errors for each domain separately 
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Table 5 Pattern of results for subclasses and subclass differences, by country, variable group and 
subclass over selected variables and subclasses 

Subclass results Subclass differences 

deft~ -1 defta -1 

Country Variable deftt Subclass deft5 deft£- l Ila R' °' deftd deft~ -1 {3 
group a (1) typeb (2) (3) (4) (5) (6) (7) (8) (9) 

Mexico Nuptiality 1.39 Demo. 1.15 0.35 52 0.59 0.76 1.05 0.32 0.91 
Socio. 1.15 0.35 72 0.49 0.47 1.13 0.86 0.96 

Fertility 1.58 Demo. 1.25 0.38 85 0.55 0.74 1.06 0.22 0.85 
Socio. 1.24 0.36 125 0.37 0.75 1.18 0.73 0.94 

Preferences 1.52 Demo. 1.20 0.34 33 0.66 0.67 1.08 0.38 0.88 
Socio. 1.22 0.37 45 0.39 0.73 1.18 0.80 0.93 

Knowledge 2.81 Demo. 1.79 0.32 31 0.85 0.87 1.08 0.08 0.60 
Socio. 1.73 0.29 36 0.77 0.85 1.46 0.57 0.82 

Use 1.92 Demo. 1.38 0.34 65 0.71 0.94 1.10 0.23 0.79 
Socio. 1.37 0.33 91 0.77 0.93 1.23 0.58 0.92 

All variables 1.70 Demo. 1.29 0.35 0.80 1.07 0.22 0.83 
Socio. 1.28 0.34 0.75 1.20 0.69 0.93 

Thailand Nuptiality 1.28 Demo. 1.21 0.73 28 0.71 0.45 1.10 0.45 0.98 
Socio. 1.20 0.69 37 0.50 0.211.09 0.43 0.98 

Fertility 1.38 Demo. 1.22 0.54 78 0.55 0.70 1.08 0.34 0.90 
Socio. 1.25 0.62 106 0.57 0.32 1.19 0.74 0.96 

Preferences 1.37 Demo. 1.25 0.64 39 0.32 0.16 1.07 0.26 0.88 
Socio. 1.22 0.56 57 0.53 0.12 1.20 0.90 0.95 

Knowledge 2.48 Demo. 1.60 0.30 30 0.68 1.14 1.02 0.03 0.65 
Socio. 1.61 0.31 37 0.77 0.77 1.69 1.17 0.95 

Use 2.15 Demo. 1.46 0.31 68 0.87 0.94 1.09 0.17 0.75 
Socio. 1.45 0.30 80 0.86 0.81 1.20 0.40 0.90 

All variables 1.65 Demo. 1.33 0.45 0.711.08 0.22 0.85 
Socio. 1.33 0.45 0.45 1.22 0.64 0.95 

Bangladesh Nuptiality 1.22 Demo. 1.12 0.52 24 0.75 0.99 1.06 0.49 0.95 
Socio. 1.18 0.80 33 0.76 0.46 1.17 0.94 0.99 

Fertility 1.12 Demo. 1.08 0.65 23 0.44 0.42 1.06 0.74 0.98 
Socio. 1.12 1.00 42 0.37 0.04 1.13 1.09 0.99 

Preferences 1.21 Demo. 1.11 0.50 29 0.49 0.49 1.04 0.35 0.94 
Socio. 1.19 0.90 53 0.57 0.16 1.19 1.00 1.00 

Knowledge 1.66 Demo. 1.28 0.36 35 0.81 0.93 1.07 0.23 0.84 
Socio. 1.45 0.63 49 0.63 0.47 1.32 0.67 0.91 

Use 1.31 Demo. 1.10 0.29 43 0.77 0.75 1.03 0.29 0.92 
Socio. 1.20 0.61 79 0.45 0.49 1.15 0.73 0.97 

All variables 1.26 Demo. 1.12 0.43 0.72 1.05 0.40 0.94 
Socio. 1.20 0.75 0.32 1.17 0.84 0.98 

Indonesia Nuptiality 1.45 Demo. 1.29 0.60 44 0.53 0.66 1.22 0.74 0.95 
Socio. 1.29 0.60 68 0.62 0.59 1.25 0.84 0.97 

Fertility 1.41 Demo. 1.29 0.67 69 0.35 0.46 1.21 0.70 0.94 
Socio. 1.29 0.67 112 0.62 0.44 1.25 0.84 0.98 

Preferences 1.55 Demo. 1.36 0.61 41 0.59 0.65 1.23 0.60 0.91 
Socio. 1.34 0.57 64 0.67 0.59 1.26 0.74 0.95 

Knowledge 2.44 Demo. 1.69 0.37 36 0.91 1.07 1.24 0.29 0.74 
Socio. 1.79 0.44 57 0.94 0.75 1.51 0.58 0.86 

Use 1.70 Demo. 1.37 0.46 74 0.61 0.85 1.20 0.50 0.87 
Socio. 1.45 0.58 115 0.79 0.64 1.36 0.77 0.95 

All variables 1.62 Demo. 1.37 0.54 0.74 1.21 0.53 0.90 
Socio. 1.39 0.57 0.60 1.31 0.77 0.95 

a same variables as table 1. For fuller details, see text p 31. 
hsee text, p 37. For specification of the subclasses used, see Verma et al (1980), appendix. 
NOTE: deft8 for subclasses, and deftt for total sample in this table are defined according to equation 
4.2 and not equation 4.8, ie the effect of weighting has not been removed from the 'design factor' as 
defined here. 
Source: Verma, Scott and O'Muircheartaigh (1980): 452. 
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using the same method as for the total sample. However, it is convenient to relate results 
for domains to those for the total sample, not only to economize on computation and 
presentation but also because results for individual geographic domains tend to be less 
stable, since they are based on a smaller number of PSUs than the total sample. 

In relation to the three components of equation 4 .9 relating se8 and set: 

Subclass and total sample standard deviations may be related as before, in accordance 
with equations 4.12-4 .15. 

2 The loss-factor due to weighting, Ls, for the domain may substantially differ from 
Lt for the total sample; often Ls < Lt since weights are frequently introduced between 
domains with self-weighting samples within domains (a common example is the over­
sampling of urban areas, with self-weighting sample (Ls = 1) within urban and rural 
domains separately). 

3 In so far as the sample design and cluster sizes are similar between different geo­
graphic domains, we expect the same deft values. Generally, however, sample design 
may differ from domain to domain, and a simple model relating domain deft~ to 
total sample deft~ is 

deft~2 = 1 +Cs (deft? - 1) (4.18) 

where cs is a constant for the domain to be determined empirically by fitting the 
above relation to the computed deft~ over a group of variables. 

Table 6 shows the results of fitting equation 4 .18 to each of the 8 'type of place' 
domains from the Turkish Fertility Survey. The self-weighting sample consists of 215 
PS Us, so that individual domain results are based on a small number (average 2 7, range 
14 to 34) of PS Us, and hence have considerable variability. Each fit is based on sampling 
errors computed for 27 substantive variables covering a wide range of variable types. 
The goodness of fit R2 varies from 0.1 to 0.6 with an average of around 0.3. Table 7 
compares computed standard errors for selected individual variables, with predicted 
values on the basis of the least squares fit to equation 4.18 and the relationships of 
equations 4.12-4.13 applied to the pooled results for all variables. 

Application to a Subclass Defined in Terms of Several Characteristics 

In a multi-way cross-tabulation, a cell corresponds to a subclass defined in terms of a 
number of characteristics. Consider, for example, the mean number of children ever 
born, classified by women's age group, level of education and type of place of residence. 

Table 6 Fitting of relation equation 4.18 to each of the eight domains by type of place of residence 
in the Turkish Fertility Survey 

Domain, s Metro- Large Medium Small Towns Large Medium Small Total 
po Ii tan cities cities cities villages villages villages 

Average deft~ a 1.21 1.32 1.57 1.33 1.50 1.65 1.47 1.66 1.48 
Estimated parameter cs 0.39 0.64 1.25 0.64 1.05 1.47 0.98 1.48 
Goodness of fit, R~ 0.11 0.26 0.37 0.28 0.19 0.56 0.22 0.29 

a Averaged over 27 variables (covering all the 5 groups defined in table 1), computed results for which 
are used to fit equation 4.18 and thence to estimate cs for each domain. 
Source: Haceteppe Institute of Population Studies (1980) 
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Table 7 Comparison of (a) computed and (b) predicted standard errors for geographic domains in 
the Turkish Fertility Survey 

Metro- Large Medium Small Towns Large Medium Small Total 
politan cities cities cities villages villages villages 

Domain 
Domain size (ns) 648 697 350 318 628 497 734 559 4431 
Cluster size, bs 19.1 19.4 21.9 22.7 20.3 19.1 21.6 24.3 20.7 
No. of clusters as 34 36 16 14 31 26 34 23 214 

Variable 
Age at first marriage 
(a) 0.190 0.170 0.247 0.238 0.221 0.211 0.148 0.218 0.072 
(b) 0.157 0.171 0.283 0.242 0.190 0.233 0.170 0.219 
Children ever born 
(a) 0.111 0.111 0.215 0.241 0.178 0.158 0.102 0.247 0.060 
(b) 0.114 0.121 0.207 0.196 0.165 0.213 0.162 0.204 
Proportion who know 
of pill 
(a) 0.008 0.011 0.031 0.029 0.026 0.029 0.030 0.040 0.010 
(b) 0.011 0.016 0.029 0.028 0.026 0.036 O.D28 0.039 
Proportion currently 
using contraception 
(a) 0.018 0.020 O.Q38 0.024 0.032 0.028 0.016 0.014 0.008 
(b) 0.020 0.020 0.032 0.026 0.022 0.023 0.015 0.014 

Source: Haceteppe Institute of Population Studies (1980) 

To estimate the sampling error for, say, urban women, educated to the primary level 
and aged 25-29, one may proceed as follows: 

Using the empirically fitted relation, equation 4.18, for geographic classes, determine 
the design factor for the variable 'children ever born' for the urban domain from the 
design factor for the total sample. 

2 Apply equation 4 .16, for mixed classes, within the urban domain to estimate deft 
for the class 'urban women, educated to the primary level'. 

3 Within the above-mentioned class, apply equation 4.10 or 4.16 for cross-classes to 
obtain deft for the subclass of ultimate interest. Finally, ses may be estimated using 
equation 4.9, with Ls corresponding to the urban domain ands; adjusted by equations 
4.12-4.15 as appropriate. 

As in the above example, it appears intuitively appropriate to proceed step by step 
from characteristics defining geographic classes to those defining mixed classes and 
finally to cross-classes. 

The following is a simple illustration of the extrapolation procedure described in this 
section. The example is adapted from an actual computation. 

Suppose that for a national sample of n = 5 ,000 women, the mean number of children 
ever born is m = 4 .02, the computed design factor deft = 1.69 and the standard error 
se = 0.073. The sample is non-self-weighting with loss factor L 112 = 1.21(equation4.7). 
Suppose that the objective is to estimate the standard error (se) for the subclass 'urban 
women who are literate and aged 20-29'. The sample weights are given to be less vari­
able within the urban domain, with 1 112 = 1.09. 
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The observed means along with sample sizes for the relevant subclass are given in the 
first two columns of table 8. Figures given are in bold type. The remaining figures are 
computed from other data in the table. The values of c8 and a are assumed to have been 
estimated by fitting the models described to a set of actual computations of design 
factors. 

The estimation procedure goes step by step from the total sample to the urban domain, 
to the urban literate subclass, and finally to urban literate women aged 20-29. Details 
are set out below. 

Total sample (1st line) , 1.69 
Column (5) computed from equation 4.8: deft = deft/L112 = -- = 1.40 

1.21 

Column (4) computed from column (5): deft'2 
- 1=1.402 -1=0.96 

2.97 
Column (8) computed from equation 4.9: se =. rc;v:;n x 1.21 X 1.40 = 0.071 

y5000 

Urban domain (2nd line) 
Column (4) computed from equation 4.18: deft? -1=0.68 x 0.96 = 0.65 

Urban literate subclass (3rd line) 
Column (3): loss factor due to weighting, assumed same as whole urban domain, 1.09 
Column (4) computed from equation 4.16: deft~2 -1=0.65 x 0.5 112 = 0.46 

Urban literate aged 20-29 subclass (4th line) 
Column (3): assumed same as whole domain, 1.09 
Column (4) computed from equation 4.10: deft~2 -1=0.46 x 0.4 = 0.18 
Column (5) computed from column (4): deft'= (0.18 + 1)112 = 1.09 
Column ( 6) computed from equation 4 .8: deft = L 112 

• deft' = 1.09 x 1.09 = 1.19 
Column (7) computed from equation 4 .13 using the value of s for the total sample: 

(
3.07) 

112 

s = - x 2.97 = 2.60 
4.02 

2.60 
Column (8) computed from equation 4.9: se =. r;f;:;;:.. x 1.09 x 1.09 = 0.154 

y400 

Table 8 Illustration of extrapolation procedure for estimating sampling errors for subclasses 

Subclass m n 1 112 (deft' 2 -1) deft' deft s se Assumed values 
of parameters; 
equations used 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Total sample 4.02 5000 1.21 0.96 1.40 1.69 2.97 0.071 se from eq. 4.9 

Urban 3.68 2000 1.09 0.65 1.29 1.41 2.84 0.092 Cg= 0.68; 
eq. 4.18 

Urban literate 3.82 1000 1.09 0.46 1.21 1.32 2.90 0.123 M 5 = 0.5, 
ct= 0.5; eq.4.16 

Urban, liten1te 3.07 400 1.09 0.18 1.09 1.19 2.60 0.154 Ms= 0.4; 
and aged 20-29 eq. 4.10 

NOTE: Figures given are in bold type. 
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4.4 SAMPLING ERRORS FOR SUBCLASS DIFFERENCES 

The variance of the difference between two means Ya and Yb is 

( 4.19) 

Except for the case when the two subclasses (a and b) come entirely from different 
PSUs, the covariance is generally positive, so that one can expect the inequality 

(4.20) 

where the first expression on the left is the variance of (Ya -yb) for a random sample, 
and the expression on the right is that variance for the clustered sample disregarding 
the covariance term. In other words, the variance of the difference of two means from 
clustered samples shows the design effect of a positive intra-class correlation ( deftd > 1 ), 
but the effect is less than that for the separate means. This has been empirically demon­
strated in many computations (eg Kish and Frankel 1974). 

In a form similar to equation 4.9 we write 

(s~ s6) 12 var CYa - YJJ) = - + - · Lct • deftd 
Ila nb 

( 4.21) 

As was shown in table 1, the effect of weighting (Lct) tends to persist for differences 
between subclasses. Column (7) of table 5 shows that even for fairly large subclasses 
(most subclasses shown in the table are of size 1000-2000) the design factor, deftd, 
for differences between subclasses is small, especially for the well-distributed demo­
graphic cross-classes; the values are somewhat larger for the less well-distributed socio­
economic subclasses. (Note that column (7), headed 'deftd ', in table 5 shows design 
factors unadjusted for weighting. For Mexico and Thailand, the samples are self-weighting 
(Ld = 1), and it makes no difference. For Bangladesh, L!/2 = 1.05 and Indonesia L.1"2 = 
1.18. The deftd shown in column (7) may be divided by the respective Ltf2 to obtain 
deft~ as defined in equation 4.21. The average deft~ for all variables for the demographic 
subclasses is 1.00 for Bangladesh and 1.03 for Indonesia. For socio-economic subclasses, 
the values are higher.) 

The effect of the covariance term may be examined in terms of the following model 
based on equation 4.20: 

(4.22) 

where generally 0 < {3 < 1; {3 = 1 when no covariance is present. Column (9) of table 5 
illustrates the {3 values estimated on the basis of a large number of computations from 
WFS surveys. Generally {3 is in the range 0.9-1.0 (ie {32 0.8-1.0); {3 values tend to be 
smaller for the well-distributed demographic subclasses, and also for groups of variables 
with larger deft. 

An alternative, but particularly convenient form is as follows. Assuming s~ = s~ 
(= s2

, say) and that the weighting factor (L) is the same for the various subclasses and 
differences involved, we can write equation 4.20, using equation 4.10 with M8 = na/n 
or nb/n, as follows: 

s2 s
2 

( n ) - ' Lct < var (Ya - Yb) < - • Lct 1 + 2 • ~ • (deft? - 1) 
nd nd n 

(4.23) 
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where llct is half the harmonic mean of subclass sizes na and nb, ie 

Even for fairly large subclasses, the range between the lower and upper limits in 
equation 4.23 tends to be small. For example, if deft~2 = 2, Lct = l and na = nb = 0. 2n, 
we have llct = O.ln and equation 4.23 becomes 

s2 s2 

10 - < var <Ya - Yb) < 12 -
11 11 

If one takes var (Ya - yb) to be in the middle of this usually small range, then 

(4.24) 

which is identical to the relation developed earlier, equations 4.9 and 4.10, with nct as 
the effective 'subclass size'. In other words, the variance of the difference between two 
subclasses is close to the variance for a subclass of size equal to half the harmonic mean 
of the two subclass sizes. If, for a particular variable and type of subclasses, the standard 
error can be reasonably approximated as a simple function of subclass size (as, for ex­
ample, is implied by equations 4.9 and 4.10), then the same functional relationship (or 
tabulated values) may be used for subclass differences, with nd, as defined above, taken 
as the subclass size. 

4.5 DESIGN FACTORS FOR COMPLEX STATISTICS 

Subclass differences represent a basic measure of relation between variables. Empirical 
findings about them lead to conjectures about design factors for other statistics that 
measure relations, such as regression coefficients. On the basis of semi-empirical con­
siderations, Kish and Frankel (1974) conclude the following in relation to deft for an 
analytic statistic, say r, such as a correlation or regression coefficient: 

deft (r) > 1. In general, design factors for complex statistics are greater than unity. 
Hence standard errors based on simple random sample assumptions tend to under­
estimate the standard error for complex statistics. 

2 deft ('Y) <deft (Y). Design factors for complex statistics tend to be less than those 
for means, for a given variable and sample or subclass. The latter are more easily 
computed and tend to provide 'safe' overestimates for the former. 

3 deft (r) is related to deft (y), For variables with high deft (y), values of deft ('y) also 
tend to be high. 

4 deft (r) tends to resemble deft (Ya - Yb), the design factor for differences between 
means. 

5 deft (r) tends to have measurable regularities for different statistics. 

Based on the above, the authors propose a simple model 

deft2 (r) = 1 + k(deft2 (y) - 1) (4.25) 
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with deft (Y) > 1; and k (O < k < 1) being specific to a particular variable, type of sta­
tistic, and sample or sample subclass. 

4.6 EXTRAPOLATION ACROSS VARIABLES 

The discussion so far has considered the relationship of <lefts (for a subclass mean, differ­
ence, or other statistic) to deftt for the total sample for a given variable. Generally, the 
relationships considered have been of the form 

deft; = 1 + ks ( deftf - I) (4.26) 

where ks is a constant or some function of subclass size and type. Consequently, the 
inferential path was from standard error (set) computed for the whole sample, to cor­
responding deftt, to <lefts and finally to ses. Given the definition of roh, equation 4.5, 
the above equation implies an assumption about the relationship of roht and rohs, such as 

or 

deft; - 1 

deftt -1 

roh8 (b,, - 1) 

roht(bt - 1) 

(4.27) 

even though roh has not been introduced explicitly into the models considered. To 
infer sampling errors from one variable to another, it is necessary to speculate explicitly 
on the likely roh values. The inferential path may be shown schematically as follows: 

Computed Inferred 

se se 

j sub classes, 
differences etc. 

deft deft 

l variables 1 
roh roh 

The basic assumption is that roh depends upon the nature of the variable, so that 
the relative values of roh for two variables tend to persist as we move from the total 
sample to diverse subclasses and subclass differences, and possibly to other sampl~designs. 
Computed roh values are often unstable and such relationships hold only approximately. 
However, regular patterns have been found in suitably averaged values. Kish et al (1976) 
found some correspondence between the type of variable and its ranking according 
to roh values. Verma et al (1980) found the ranking of median rohs for groups of sub­
stantively similar variables to be consistent across a number of WFS surveys; furthermore, 
the ranking of surveys in different countries by median roh was found to be consistent 
across different groups of variables. 
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4.7 SAMPLING ERRORS FOR FERTILITY RATES 

Computation of fertility rates from retrospective birth histories, for the total sample 
as well as for major domains, is an important objective of WFS surveys. Generally fertility 
rates are ratio estimates of the form 

rate = ~ birth/~ exposure ( 4.28) 

where the numerator is the accumulation (weighted if applicable) of births to a specified 
category of women during a specified time period, and the denominator is the accumu­
lated length of 'exposure' to childbearing for the same category of women during the 
same period. 

With different definitions of exposure, time periods and categories of women, various 
types of fertility rates can be defined (a detailed account is given in Verma 1980). To 
illustrate some issues relevant to sampling error, we will consider the conventional age­
specific fertility rates (ASFRs). Here the births in the numerator are classified according 
to the period of occurrence (the one-year period prior to the interview, or specified 
calendar years, etc) and the age of the mother at birth of the child (20-24, 25-29, 
etc). The denominator is the number of person-years lived by women (irrespective of 
marital status) during the specified period and at the specified age. 

In WFS surveys, two types of sample have been used for the detailed fertility inter­
view: (a) a sample of all women within given age limits, irrespective of marital status, 
and (b) a sample of women within given age limits confined to women who are or have 
been married. In the computation of age-specific rates for the second case, it is necessary 
to adjust 'exposure' (equation 4.28) to include the never-married women who have been 
excluded from the sample interviewed. This can be done (assuming no births to never­
married women) on the basis of information on the proportion ever-married from the 
household interview, which precedes, and forms the basis of selection for, the women's 
interview: 

or 

rate 

I 

( 
~birth ) 

~exposure 

r - r • p, say. 

ever­
manied 
women 

X (proportion ever married) 

r is a product of two ratios and its variance is, approximately, 

var(r) = p2 var(r') + r' 2 var(p) + 2p • r' cov(p, r') 

from household 
intervie\v 

( 4.29) 

( 4.30) 

The covariance term can arise because r' is based on the same sample as p (or on a 
subsample of it). However, using 'all-women' samples from WFS surveys in Colombia 
and Kenya, on the basis of which var(r) as well as var(r') and var(p) can be directly 
calculated, Little ( 1982) found the covariance term not to be significant, so that from 
equations 4.29 and 4.30, 

var(r) 

~ 
var(r') var(p) -'- +--

r'2 P2 

Consider a fertility rate defined for a short reference period, say one year. For samp­
ling, error purposes, the chance of a woman having more than one birth during this period 
is nlegligible, so that the rate is equivalent to the proportion of women having a birth 
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during the one-year period. Hence, assuming a self-weighting sample, the variance of r 
may be written as: 

(
r(l - r)) 

se2(r) = ei • defti (4.31) 

where suffix 1 indicates a reference period of one year and e 1 is the number of person­
years lived by the sample of women during the one-year reference period, which is 
approximately equal to n, the sample size. As the reference period is increased to, say, 
p years, Little (1982) suggests the following modification to equation 4.31: 

se2 (r) = (b~ r(le~r)} deft~ 
The design factor deftp tends to increase with increasing p; ep is the total number 

of person-years lived by the sample of women during the p years reference period, and 
approximately 

ep = p • n, that is, p times the sample size. 

bp is the 'birth correlation factor' and represents departures from the binomial model 
(s2 = r(l - r)) which are not attributable to departures of the sample from simple 
random sampling. The factor takes into account the correlation between births to an 
individual woman. Empirically, the factor may not differ greatly from unity; Little 
reports average values between 0.99 and 1.05 for p = 3 years. 
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5 Presentation of Sampling Errors in Survey Reports 

5.1 MODES OF PRESENTATION 

Even when suitable computer programs are available for extensive computation of samp­
ling errors, their presentation in a suitable form remains a problem in large-scale, multi· 
purpose surveys. Obviously the presentation with each and every survey estimate of its 
associated sampling error is out of the question, since that would double the size of the 
publication. Nor would such undigested presentation be useful, since results of individual 
computations are not always reliable, given the variability of sampling error estimates 
themselves. 

Certain basic principles need to be observed in choosing the appropriate mode of 
presentation of information on sampling errors: 

Sampling errors must be presented in the context of the total survey error. The user 
should be made aware of the fact that sampling variability is just one, and not always 
the most significant, component of the total error. 

2 The information on sampling errors must not clutter the presentation of substantive 
results of the survey. The objective of providing this information is to elucidate the 
limits to the reliability of the substantive results and not to obscure them. 

3 The presentation should be in a form which facilitates and encourages the proper 
interpretation and use of the information. It is better to provide approximate in­
formation which is more likely to be applied than to provide exact information 
which is hard to use. 

4 Above all, the mode of presentation and the degree of detail given should suit the 
specific needs of particular categories of users. 

Several categories of users may be distinguished. The first is the general reader, perhaps 
with no special interest or expertise in survey methodology or substantive research, 
who is interested in using the survey results for drawing broad conclusions and taking 
decisions. For this type of user, the information on sampling variability should indicate 
the overall quality of the results of the survey and their place within the wider body of 
related statistical information. More specifically, it should indicate how substantively 
significant conclusions to be drawn from the survey may be affected by the uncertainties 
due to sampling variability. 

The second category is the substantive analyst engaged in primary or secondary 
analysis and reporting of results. This type of user requires access to more detailed 
results, and would expect to find not only direct estimates of sampling error for all 
major statistics, but also a general indication of the magnitude of sampling error to be 
expected for any statistic which may be derived from the survey. 

The third category is the sampling statistician concerned with evaluating the statistical 
efficiency of the design adopted in the survey, or with designing samples for future 
surveys. This type of user is interested in relating the magnitude and components of 
sampling error to features of the sample design. 

Before considering the question of presentation to suit different types of users, it 
is useful to remark on the general strategy. Even when the information of sampling 
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errors is presented in a summary form, it is desirable that this summarization should be 
based on extensive computations. 6 In a multi-subject survey, it is desirable to compute 
sampling errors for many substantive variables of different types. A very wide range of 
values of standard errors and design factors is generally found for diverse variables within 
the same survey. As noted earlier, an empirical basis for averaging results across different 
variables is generally much less certain than the averaging or modelling of variation 
across different sample subclasses for a given variable. Also, it is inadequate to single out 
arbitrarily one or a few variables as 'critical' survey variables for sampling error compu­
tations. The range of variables selected for computation should parallel the important 
aims of the survey, of its analysts and of its users (Kish et al 197 6: 21 ). 

It is desirable to repeat the computations for major domains of the sample for which 
separate results may be required. This is specially important if (as often is the case) the 
sample design varies from one domain to another. Further, it is important to compute 
sampling errors not only for the entire sample or its major geographic domains, but also 
for a range of subclasses and subclass differences. To generalize on the patterns of vari­
ation across subclasses, it is necessary to cover subclasses of different types, distribution 
and size. 

Hence the general strategy should be to compute sampling errors for all important 
variables for the total sample, for each sampling domain, and for at least a moderate 
number of subclasses and differences. The larger the design factors (deft) for the total 
sample, the more important it is to investigate their variation for subclasses of diverse 
types and sizes. 

5.2 FOR THE GENERAL READER 

For the general reader, the focus should be on how information on sampling errors (or 
indeed on any type of survey errors) affects the interpretation of substantively signi­
ficant results of the survey. As noted earlier, sampling error should be placed in the 
context of total survey error, and viewed as the lower limit of that error. It should 
be indicated how sampling error becomes the critical component of total error for small 
subclasses and subclass differences, and how their magnitude determines the detail 
to which the survey data may be meaningfully cross-classified. 

The text of a report presenting sampling error data should include a statement that 
defines and interprets terms such as 'sampling error', 'standard error' and 'confidence 
interval', etc, as discussed in section 2 above. These concepts should be illustrated by 
numerical examples. Gonzalez et al (197 5) provide examples of an introductory text 
which may be used for this purpose. Their paper discusses the presentation of sampling 
and other survey errors at length, with many illustrations. 

For the general reader, the most useful form of presentation probably is to accompany 
all important estimates discussed in the text with their respective sampling error, specially 
where the error may affect the substantive conclusions to be drawn from the surveys. 
Sampling errors may be presented in different forms, for example: 

as absolute values of the standard error (se); 

2 as relative values, standard error divided by the mean (se/y); or 

6 Of course, in a multi-round survey, or in a series of similar surveys, the stability of variance patterns 
may obviate the need for detailed computations for each survey round (see, for example, Zarkovich: 
1979). Nevertheless, for the set of surveys as a whole, valid conclusions regarding the behaviour of 
sampling errors can be based only on detailed computations at some stage. 
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3 in the form of probability or confidence intervals. 

The preference between absolute and relative se will depend upon the nature of the 
estimate. The same value of relative se may be applicable to a number of estimates, for 
example for aggregates that vary greatly in size or in unit of measurement. In such cases, 
it is economical, as well as more illuminating for the reader, to present relative se. 

However, absolute values of se are sometimes easier for the reader to relate to the 
estimate, especially in the case of proportions, percentages and rates. In any event, it is 
important to avoid ambiguity in presenting standard errors for percentages: clear dis­
tinction needs to be made between the absolute number of percentage points and the 
concept of relative error in percentage terms. 

For example for a percentage p = 40 per cent and standard error se = 2 per cent, 
the relative error is 5 per cent, and should not be confused with the absolute value of 
the standard error (2 per cent). 

The presentation of error in the form of probability intervals requires a choice of the 
confidence level. Some analysts prefer to give only the standard error (eg in parentheses 
following the estimate in the text, or as a separate column in text tables), so that the 
user can compute whatever multiple of standard error is appropriate for the desired con­
fidence interval. However, in guiding the user in the interpretation of results when issues 
of statistical significance arise, it is more convenient to present the survey estimates 
directly in the form of confidence intervals. Since there is no widespread agreement 
on the appropriate choice of confidence interval (say, 90, 9 5 or 99 per cent), it is neces­
sary (a) to specify what confidence interval is being used, and (b) to follow the same 
level throughout as far as possible in determining what is to be regarded as 'statistically 
significant'. The most common practice, and that used in WFS First Country Reports, 
is to use the 9 5 per cent confidence interval, ie 

estimate ± 2 • (standard error) 

It should be pointed out that to avoid comment when the observed difference is not 
'statistically significant' is not always the appropriate solution: it may reduce the at­
tention given to important results, or encourage an interpretation of 'no difference', 
or 'no change', when the band of uncertainty is large and important differences could 
be present. Furthermore, it is possible that significant results would emerge with less 
detailed classification of the sample; if so, attention should be drawn to this fact. 

In many situations it is sufficient to provide only approximate information on the 
magnitude of the standard error. This would be the case, for example, when se (or relative 
se) has similar values for a number of estimates, so that a single averaged value may 
suffice. Similarly, approximate values would suffice when sampling error is unimportant 
with respect to the relationship being discussed. 

In such situations a simple statement, such as 'relative error of these estimates is in 
the range 3-5 per cent .. .' may be included in the text, text tables or footnotes. Some­
times, a little more detailed information may be provided by indicating different ranges 
of values of se by different symbols, for example as follows: 

Relative standard error is under 5 per cent unless otherwise indicated. 
Relative error 5-10 per cent is indicated by one asterisk*. 
Relative error 10-15 per cent is indicated by two asterisks**. 
Relative error> 15 per cent is indicated by enclosing the estimate in parentheses ( ). 

A simpler version of this scheme has been used in most WFS reports. To save space 
and improve readability, the text or summary tables in these reports generally do not 
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indicate the number of sample cases on which estimates are based. As a safeguard to the 
reader, the following system has been used to indicate the range of sample size (rather 
than of the standard error directly) for cells of the text tabulations: 

Ill Sample size (cell frequency)> 50 unless indicated otherwise. 
111 If frequency 20-50, estimate enclosed in parentheses ( ). 
Ill If frequency< 20, estimate suppressed and replaced by an asterisk*. 

It should be pointed out that suppression of some data cells in a table because the 
sampling error is too large (ie cell size too small) is not in general a good practice. (In 
WFS reports, this is done only for the text or summary tables, which are always ac­
companied by the full set of detailed cross-tabulations from which they are derived.) 
Suppressing of individual cell values prevents the user from combining categories of the 
table. Moreover, results which may not be statistically significant due to large sampling 
error may still be meaningful, for example the fact that the estimate is 'small' rather 
than 'large'. Consider two groups of women with the estimated mean number of children 
ever born as 6 .1 and 6 .2, and with standard error of the difference as 0 .1. The 9 5 per 
cent confidence interval of the difference is (6.2-6.1)±2(0.1), that is -O.l to 0.3, 
so that the difference is not statistically significant at the 95 per cent level. However, 
the results are substantively meaningful in that the difference is small, whatever its sign 
or exact magnitude. 

5 .3 FOR THE SUBSTANTIVE ANALYST 

The substantive analyst will generally require more detailed information. He or she may 
wish to go beyond the text or text tables to look at the detailed tabulated data or to 
produce new tabulations, and will expect to find not only direct (computed) estimates 
of sampling errors for all major statistics, but also a general indication of the magnitude 
of standard error to be expected for any estimate over any category of the sample. These 
requirements suggest: 

A tabular presentation of computed sampling error estimates for all important vari­
ables for the total sample, for major sampling domains, and for a variety of subclasses 
and subclass differences. 

2 A graphic or tabular presentation of approximate standard errors (or other measures 
of sampling error) for a number of variables as a function of subclass size. 

3 Similar information for differences between subclasses. 

It may be necessary to produce summaries like (2) and (3) separately for different 
types of subclasses or for different sampling domains. The objective is to summarize 
results from detailed computations, smooth out random variability in computed results, 
and provide a basis for extrapolation to statistics for which sampling errors have not been 
computed or tabulated. Comparison of the averaged or smoothed results with those 
actually computed provides the user with an impression of the degree of reliability of 
individual computations and of the goodness of fit of the smoothed results. 

Table 9 provides an illustration from the Indonesia Fertility Survey. It shows the 
approximate variation of standard error by subclass size, for each of the important 
survey variables. The table provides a good approximation for cross-classes (such as 
age groups of women) and for· those subclasses which are distributed over most sample 
clusters, even if not uniformly. The latter would cover most socio-economic subclasses. 
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Table 9 Approximate value of standard error, by variable and subclass size (Ilg), Indonesia Fertility Survey, 1976 

Unweighted subclass size (ns) 

30- 51- 101- 201- 401- 701- 1001- 1501- 2001- 3001- 5001 > 7000 
Variable 50 100 200 400 700 1000 1500 2000 3000 5000 7000 

Age at marriage 0.53 0.40 0.30 0.22 0.17 0.14 0.12 0.11 0.09 0.08 O.Q7 0.06 
First marriage dissolved 0.080 0.060 0.045 0.030 0.025 0.020 0.017 0.014 0.013 0.011 0.008 0.007 
Remarried 0.065 0.050 0.035 0.025 0.020 0.017 O.Q15 0.013 0.012 0.009 0.008 0.007 
Exposed 0.080 0.060 0.040 0.030 0.022 0.018 0.016 0.013 0.012 0.010 0.008 0.007 

Children ever born a 0.450 0.340 0.240 0.180 0.130 0.110 0.090 0.080 0.070 0.060 0.050 0.040 
Births in first 5 years 0.160 0.120 0.090 0.060 0.050 0.040 0.035 0.030 0.025 0.020 0.017 0.015 
First birth interval 2.35 1.80 1.30 0.95 0.72 0.60 0.50 0.44 0.38 0.31 0.26 0.23 
Births in past 5 years 0.165 0.125 0.090 0.065 0.050 0.042 0.035 0.031 0.027 0.022 0.018 0.017 
Closed birth interval b 4.35 3.25 2.35 1.75 1.35 1.10 0.95 0.80 0.65 0.60 0.50 0.45 
Open birth intervalb 8.35 5.90 4.70 3.50 2.70 2.25 1.90 1.65 1.45 1.20 1.05 0.92 
Months breastfed 0.98 0.78 0.52 0.37 0.28 0.23 0.20 0.17 0.14 0.12 0.10 0.09 
Pregnant 0.045 0.032 0.024 O.Q18 0.013 0.011 0.009 0.008 0.007 0.006 0.005 0.004 

Wants no more children 0.080 0.060 0.045 0.035 0.026 0.022 0.020 0.016 0.015 0.013 0.010 0.009 
Prefers boy 0.080 0.060 0.045 0.032 0.024 0.020 0.018 0.014 0.013 0.011 0.009 0.007 
Last child unwantedc 0.060 0.045 0.035 0.025 0.019 0.016 0.013 0.011 0.010 0.008 0.007 0.006 
Additional number wantedd 0.265 0.190 0.140 0.105 0.080 0.070 0.060 0.050 0.045 0.037 0.032 0.028 
Desired family size 0.335 0.260 0.195 0.145 0.115 0.100 0.085 0.075 0.065 0.055 0.045 0.040 

Knows modern method 0.075 0.060 0.045 0.030 0.025 0.020 0.018 0.015 0.014 0.012 0.010 0.009 
Ever used pill 0.065 0.050 0.040 0.030 0.022 0.019 0.017 0.014 0.013 0.011 0.009 0.008 

/ 

Ever used IUD 0.040 0.030 0.025 O.Q18 0.014 0.012 0-:009 0.008 0.007 0.007 0.006 0.005 
Used any method 0.080 0.060 0.045 0.035 0.025 0.022 0.020 0.016 0.015 0.013 0.010 0.009 
Used modern method 0.080 0.060 0.045 0.035 0.025 0.022 0.020 0.016 0.015 0.013 0.010 0.009 
Using folk method 0.025 0.020 0.014 0.010 0.008 0.006 0.005 0.004 0.003 0.003 0.002 0.002 
Using any method 0.080 0.060 0.045 0.035 0.025 0.022 0.020 0.016 O.Q15 0.013 0.010 0.009 
Contracepting and wanting 0.080 0.060 0.045 0.035 0.025 0.022 0.020 0.016 0.015 0.013 0.010 0.009 
no more children 

aFor subclasses with mean< 2.5, multiply shown value of se by 0.5. 

"' bFor variables '9' and '10', multiply shown value by 0.7 for subclasses with mean< 40.0, and multiply shown values by 1.3 for subclasses with mean> 45.0. 
cFor subclasses with proportion< 0.1, multiply shown values of se by 0.5. dFor subclasses with mean< 0.5, multiply shown values of se by 0.5. 
Source: Central Bureau of Statistics (1978) 



Table 10 For standard error (sea) of the difference between two subclasses of size n1 and n 2 , the 
appropriate sample base (na) to be used in table 9 

100 
200 
400 
600 

1000 
n 2 1500 

2000 
2500 
3000 
4000 
5000 

Procedure 

100 

50 
70 
80 
90 
90 
90 

100 
100 
100 
100 
100 

200 400 

100 
130 200 
150 240 
170 290 
180 320 
180 330 
190 340 
190 350 
190 360 
190 370 

n 1 (<n 2 ) 

600 1000 1500 

300 
380 500 
430 600 
460 670 
480 710 
500 750 
520 800 
540 830 

750 
860 
940 

1000 
1090 
1150 

2000 2SOO 3000 4000 5000 

1000 
1110 
1200 
1330 
1430 

1250 
1350 
1540 
1670 

1500 
1710 
1880 

2000 
2220 2500 

To estimate standard error for the difference in mean/proportion between two subclasses of un­
weighted sample size n 1 and n2 (n 1 < n,, say) proceed as follows: 
Read column in table 10 nearest to n1 and row nearest to n 2 • The cell at the intersection of these 
gives the appropriate size na to be used, for the given variable, in table 9. 
If only the weighted subclass sizes are given, first use table 11 to obtain the unweighted sizes n 1 and 
n2. 
Source: Central Bureau of Statistics (1978) 

The various footnotes to table 9 give very approximate adjustments to be made if the 
value of certain substantive estimates (means and proportions) for the subclass differs 
greatly from the value for the sample as a whole. Similar tables may be constructed for 
each geographic domain of the sample separately. 

In fact, table 9 also provides approximate values of the standard error for subclass 
differences, using the approximation explained in section 4.4, that is, taking the ef­
fective sample size for a difference of two subclasses as half the harmonic mean of the 
two subclass sizes. Table 10 is used to determine the effective sample size na for the 
difference of two subclasses of size n 1 and n2 . Then this na is used in table 9 to estimate 
the approximate standard error for the difference. 

For such information to be useful, the user must have access to sample sizes of indi­
vidual cells in the detailed cross-tabulations. This generally presents no special problem 
in self-weighting samples. However, for weighted samples it is often not convenient to 
show both weighted and unweighted frequencies. Exact weighted frequencies are re­
quired to permit amalgamation of categories in the table, while unweighted frequencies 
are required only approximately, as an indication of the sampling error. When only one 
set of frequencies can be shown, it is preferable to show the weighted frequencies. Tables 
showing the approximate correspondence between weighted and unweighted frequencies 
for all major subclass categories and domains may then be required. An example is shown 
in table 11. 

5.4 FOR THE SAMPLING STATISTICIAN 

The sampling statistician is concerned with the statistical efficiency of the design adopted 
compared to alternatives which could have been adopted, or more relevantly, that might 
be adopted in future surveys with similar objectives. The type of information that is 
useful for sample design and evaluation includes: 
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Table 11 Factor by which weighted frequencies should be multiplied to obtain the corresponding 
unweighted sample size for various subclasses of the sample, by province and type of place of residence 

Subclass All Type of place Provincea 
Jawa-Bali 

Urban Rural Jawa Jawa Yogykarta Jawa Bali 
Barat Tengah Timur 

All 1.00 2.04 0.81 0.73 0.76 3.53 0.70 4.83 
Age 
Under 25 0.95 2.06 0.77 0.70 0.74 3.56 0.70 4.77 
25-34 1.03 2.07 0.83 0.74 0.75 3.53 0.70 4.86 
35-44 1.02 2.00 0.82 0.74 0.76 3.54 0.71 4.79 
45-49 0.98 2.00 0.79 0.76 0.80 3.46 0.69 5.00 
Years since marriage 
Under 10 1.04 2.09 0.83 0.72 0.76 3.50 0.71 4.78 
10-19 1.03 2.05 0.83 0.74 0.75 3.57 0.70 4.82 
20-24 1.00 2.04 0.82 0.71 0.76 3.46 0.71 4.95 
25 + 0.89 1.92 0.73 0.74 0.76 3.52 0.68 4.92 
Age at marriage 
Under 15 0.78 1.99 0.70 0.69 0.71 3.64 0.65 5.17 
15-19 0.90 2.02 0.82 0.71 0.73 3.66 0.69 4.82 
20 + 1.43 2.12 1.14 0.87 0.89 3.46 0.77 4.85 
Level of education 
No schooling 0.93 0.65 0.71 3.63 0.65 4.81 
Primary incomplete 0.95 0.73 0.75 3.49 0.71 4.88 
Primary completed 1.14 0.79 0.92 3.37 0.81 5.00 
Junior high+ 1.73 1.16 1.27 3.20 1.08 4.90 
Husband's occupation 
Prof., admin, clerical 1.45 0.94 1.06 3.46 0.87 4.93 
Sales, services 1.11 0.79 0.92 3.22 0.85 4.59 
Manual 1.24 0.80 0.97 3.26 0.84 4.77 
Farming 0.83 0.63 0.65 3.68 0.62 4.89 

a Factor for Jakarta for all subclasses= 2.76. 
NOTE:'-' Means not tabulated. 
Source: Central Bureau of Statistics (1978) 

Detailed information on standard errors and their pattern of variation with subclass 
type and size, as described in the previous section. 

2 Similar information on design factors. 

3 Information on roh values to permit extrapolation across variables and across designs. 

4 Information on the effect of specific features of the design, such as stratification, 
clustering of ultimate area units and of other higher stage units, departures from 
self-weighting, etc. 

5 More generally, information on components of the sampling error for multi-stage 
designs. 

As noted in the introduction, sample design is severely constrained by numerous 
practical considerations. Statistical efficiency is just one of the factors involved. Never­
theless, it is an important factor in making choices within the class of designs permitted, 
however narrowly, by considerations of practicality, quality control and cost. 
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Appendix A- A Brief Description of the 
CLUSTERS Package 

INTRODUCTION 

One of the main obstacles in computing and presenting sampling errors along with sub­
stantive survey results has been the non-availability of an adequate, efficient and easy­
to-use computer software package for sampling error calculations. To rectify this 
situation, WFS developed, and distributed for a nominal charge, a fairly modest, simple 
and fast package called CLUSTERS. 7 The package has facilitated the inclusion of samp­
ling error results in most WFS First Country Reports. However, the usefulness of 
CLUSTERS is by no means limited to WFS-type surveys. The following description 
of the main features of the package is provided to encourage agencies engaged in sample 
surveys to utilize the package, and undertake routine and extensive computation of 
sampling errors.8 

2 BASIC REQUIREMENTS FOR A SOFTWARE PACKAGE 

With CLUSTERS, an attempt has been made to meet the basic requirements for a general 
and widely usable software package for calculation of sampling errors for descriptive 
sample surveys. These requirements can be outlined as follows: 

The program should be able to handle, simply and cheaply, a large number of vari­
ables over different sample subclasses. It should not require the use of large computers 
or other very specialized facilities. 

2 In relation to the study of differentials between subpopulations, sampling errors for 
differences between pairs of subclasses should also be computed. 

3 It should be possible to repeat, in a simple way, the entire set of calculations for 
different geographical or administrative regions; such breakdowns are often required 
for substantive survey results. 

4 The computational procedure must take into account the actual sample design, in 
particular the effects of clustering and stratification, which influence the extent of 
sampling errors. However, the program should not be limited to a particular sample 
design; it should not assume particular models like 'paired selection of primary samp­
ling units' in order to estimate variances. 

5 It should be able to handle weighted data. 

6 As far as possible, the program should not require any particular arrangement of form 
of input data. Where recoding of the raw input data is required, it is desirable that 
the software package itself should be able to handle this, without the need to write 
special programs for that purpose alone. 

7 In addition to calculating standard errors, it is also desirable that the program compute 
certain other derived statistics. Such computed values may assist users to extrapolate 

7 Computation and Listing of Useful STatistics on ERrors of Sampling. 
8 The following description is adapted fiom Verma (1978). Further details are available in the Users' 
Manual (Verma and Pearce 1978). 
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to other variables and subclasses for the given sample and possibly also to future 
surveys. One of the objectives of calculating sampling errors is to provide information 
for sampling statisticians attempting to design other studies under similar survey 
conditions. 

3 MAIN FEATURES OF CLUSTERS 

CLUSTERS is a FORTRAN IV based software package (it also requires a standard 
sort program). It uses approximately SOK bytes of core storage though if more is avail­
able for work areas, more calculations can be done in one run of the program. However, 
SOK bytes is enough for an average number of variables and subclasses. The package 
is not machine dependent, and has been installed on a variety of machines (IBM 360/ 
370, ICL 2900, HP 3000, CDC 6000). 

Below the main features of CLUSTERS are summarized in relation to the basic re­
quirements discussed above. 

Handling of Different Variables and Sample Subclasses 

We note that subclasses for sampling error calculations usually are defined in terms of 
the characteristic used in the cross-classification of the substantive results from the 
surveys. Often the same system of cross-classification is relevant to all (or most) survey 
variables. Variables like family size or prevalence of contraceptive use may all be pre­
sented after classification of the sample by characteristics such as age or socio-economic 
background of the units of analysis. 

Making use of these common features, the calculations to be performed are specified 
in CLUSTERS in terms of a rectangular 'variable by subclass' matrix. Sampling errors 
are then computed for all variables over each subclass (and automatically over the whole 
sample) in the specified set. In addition, CLUSTERS automatically computes sampling 
errors for each subclass, treating it as a characteristic distributed over the entire sample. 
As an example, if sampling errors for 20 variables over 15 sample subclasses are to be 
computed (a typical WFS survey requirement), it is not necessary to specify 20 x 15 = 
300 'problems' separately, but only 20 + 15 = 35 variables and subclas-ses-. -

Subclass Differences 

The sample subclasses for which sampling errors are to be computed can be specified in 
pairs. In that case CLUSTERS automatically calculates the difference and its standard 
error for each subclass pair. A given subclass may, if desired, appear in more than one 
pair; moreover the subclasses in a pair need not necessarily be non-overlapping or ex­
haustive. 

Separate Results for Geographical Regions 

The entire set of calculations for variables over sample subclasses and for differences 
between subclass pairs can be repeated for the separate geographical regions into which 
the survey universe may have been divided. This repetition is extremely straightforward 
from the user's point of view and does not involve much additional computer time. 
One restriction regarding this facility in CLUSTERS is that the geographical regions 
must be non-overlapping and the sample must be selected independently within each 
region. 
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Sample Structure 

CLUSTERS computes sampling errors taking into account the actual sample design, in 
particular the clustering and stratification of the sample. The basic units involved in the 
computational formulae are the primary sampling units (PSUs), ie the first or highest 
stage units selected into the sample. The procedure is roughly as follows: for any vari­
able under study, a summation (weighted if applicable) is made over the values of the 
variable for all individual cases (belonging to a particular sample subclass) in each PSU. 
The PSU totals are then differenced from a mean of all sample PSUs within each stratum 
according to formulae described in the Users' Manual. These differences are then squared 
and pooled over the whole sample (or over each geographical region, if applicable) and 
divided by an appropriate constant to produce estimates of sampling variance. 

For a multi-stage sample, the procedure does not split the overall variance into separate 
components associated with the individual stages. Hence all that is required regarding 
specification of the sample structure is an identification of the PSU, stratum and geo­
graphic region (if applicable) for each individual case (ie each ultimate sampling unit). 
One of the noteworthy features of CLUSTERS is the fair degree of flexibility regarding 
the form of this identification; restructuring or recoding of the input data is not normally 
required. 

Weighted Data 

CLUSTERS handles non-self-weighting samples, ie samples in which the ultimate units 
need to be weighted to compensate for differences in probabilities of selection or for 
defects in sample implementation, eg non-response. These sample weights may be scaled 
arbitrarily and specified either as a data field on each individual record or simply in 
terms of the identification code for each of the 'higher stage' units mentioned in the 
previous paragraph. 

Recoding of Input Data 

It is often necessary to recode raw input data before the required statistics like pro­
portions, means, or ratios and their standard errors can be calculated. For this purpose, 
CLUSTERS includes a limited set of recoding facilities. These can define new variables 
on the basis of one or more input data fields. Though using these facilities is not always 
the most economical means of recoding variables, they are simple to use and have been 
found quite versatile. 

Derived Statistics 

In addition to standard errors, CLUSTERS outputs two derived statistics, namely design 
factor (deft) and rate of homogeneity (roh). They provide the basis for generalizing 
the computed results to other variables and subclasses of the particular sample, and 
possibly also to other sample designs. 

4 LIMITATIONS 

The main limitations of the package are as follows. 
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It cannot handle hierarchical data files. The file must be rectangular with no non­
numeric codes. 



2 Analysis of variance into components attributable to different sampling stages is not 
included. However, by repeating the calculation, ignoring one or more higher stages, 
the effect of those stages can be isolated approximately. For illustrations of this 
approach see Verma et al (1980). 

3 CLUSTERS is confined to descriptive statistics, such as proportions, percentages, 
means and ratios. Differences of ratios of only a specific (but by far the most com­
monly encountered) type are handled. It is assumed that the two ratios being differ­
enced are defined by the same pair (numerator and denominator) of variables, but 
over different subclasses of the sample; the subclasses may overlap and need not be 
exhaustive. The package does not handle more complex statistics such as general 
linear combinations of ratios, products or ratios of ratios, nor of course, regression 
and correlation coefficients, etc. 
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